145
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A new thermodeactivation model for soot surface reactivity toward O2 in turbulent hydrocarbon diffusion flames

ORCID Icon, &
Pages 838-849 | Received 08 Nov 2021, Accepted 14 Jul 2022, Published online: 26 Jul 2022

References

  • Appel, J., H. Bockhorn, and M. Frenklach. 2000. Kinetic modeling of soot formation with detailed chemistry and physics in premixed hydrocarbon flames. Combus. Flame 121 (1–2):122–36. doi:10.1016/S0010-2180(99)00135-2.
  • Bai, X. S., M. Balthasar, F. Mauss, and L. Fuchs. 1998. Detailed soot modeling in turbulent jet diffusion flames. Symp. (Int.) Combust 27 (1):1623–30. doi:10.1016/S0082-0784(98)80572-9.
  • Blanquart, G., P. Pepiot-Desjardins, and H. Pitsch. 2009. Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combus. Flame 156 (3):588–607. doi:10.1016/j.combustflame.2008.12.007.
  • Dworkin, S. B., Q. Zhang, M. J. Thomson, N. A. Slavinskaya, and U. Riedel. 2011. Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame. Combus. Flame 158 (9):1682–95. doi:10.1016/j.combustflame.2011.01.013.
  • Fairweather, M., W. P. Jones, H. S. Ledin, and R. P. Lindstedt. 1992. Predictions of soot formation in turbulent, non-premixed propane flames. Symp. (Int.) Combust 24 (1):1067–74. doi:10.1016/S0082-0784(06)80126-8.
  • Frenklach, M., and H. Wang. 1994. Detailed mechanism and modeling of soot particle formation. In Soot formation in combustion, ed. Bockhorn, H, 165–192. Springer Series in Chemical Physics. Berlin, Heidelberg: Springer.
  • Frenklach, M. 2002. Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys 4 (11):2028–37. doi:10.1039/b110045a.
  • Harris, S. J., and A. M. Weiner. 1983. Determination of the rate constant for soot surface growth. Combust. Sci. Technol 32 (5–6):267–75. doi:10.1080/00102208308923661.
  • Kazakov, A., H. Wang, and M. Frenklach. 1995. Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10 bar. Combus. Flame 100 (1–2):111–20. doi:10.1016/0010-2180(94)00086-8.
  • Kent, J. H., and D. Honnery. 1987. Soot and mixture fraction in turbulent diffusion flames. Combust. Sci. Technol 54 (1–6):383–98. doi:10.1080/00102208708947062.
  • Khosousi, A., and S. B. Dworkin. 2015a. Detailed modelling of soot oxidation by O2 and OH in laminar diffusion flames. Proc. Combust. Inst 35 (2):1903–10. doi:10.1016/j.proci.2014.05.152.
  • Khosousi, A., and S. B. Dworkin. 2015b. Soot surface reactivity during surface growth and oxidation in laminar diffusion flames. Combus. Flame 162 (12):4523–32. doi:10.1016/j.combustflame.2015.09.005.
  • Kumar, S., and D. Ramkrishna. 1996. On the solution of population balance equations by discretization—I. A fixed pivot technique. Chem. Eng. Sci 51 (8):1311–32. doi:10.1016/0009-2509(96)88489-2.
  • Neoh, K. G., J. B. Howard, and A. F. Sarofim. 2013. Soot oxidation in flames. Boston, MA: Particulate Carbon. Springer.
  • Netzell, K., H. Lehtiniemi, and F. Mauss. 2007. Calculating the soot particle size distribution function in turbulent diffusion flames using a sectional method. Proc. Combust. Inst 31 (1):667–74. doi:10.1016/j.proci.2006.08.081.
  • Park, S. H., and S. N. Rogak. 2004. A novel fixed-sectional model for the formation and growth of aerosol agglomerates. J. Aerosol. Sci 35 (11):1385–404. doi:10.1016/j.jaerosci.2004.05.010.
  • Park, S. H., S. N. Rogak, W. K. Bushe, J. Z. Wen, and M. J. Thomson. 2005. An aerosol model to predict size and structure of soot particles. Combust. Theory Modelling 9 (3):499–513. doi:10.1080/13647830500195005.
  • Pundle, A. 2019. Combustion, heat transfer and soot formation in cookstoves. Ph.D. Dissertation, Department of Mechanical Engineering, University of Washington. https://digital.lib.washington.edu/researchworks/handle/1773/45229
  • Salatino, P., O. Senneca, and S. Masi. 1999. Assessment of thermodeactivation during gasification of a bituminous coal char. Energy Fuels 13 (6):1154–59. doi:10.1021/ef9900334.
  • Sazhin, S. S. 1994. An approximation for the absorption coefficient of soot in radiating gas. Reading, UK: Manuscript, Fluent Europe, Ltd.
  • Senneca, O., P. Russo, P. Salatino, and S. Masi. 1997. The relevance of thermal annealing to the evolution of coal char gasification reactivity. Carbon 35 (1):141–51. doi:10.1016/S0008-6223(96)00134-0.
  • Senneca, O., and P. Salatino. 2002. Loss of gasification reactivity toward O2 and CO2 upon heat treatment of carbons. Proc. Combust. Inst 29 (1):485–93. doi:10.1016/S1540-7489(02)80063-3.
  • Singh, R., and M. Frenklach. 2016. A mechanistic study of the influence of graphene curvature on the rate of high-temperature oxidation by molecular oxygen. Carbon 101:203–12. doi:10.1016/j.carbon.2016.01.090.
  • Smooke, M. D., C. S. McEnally, L. D. Pfefferle, R. J. Hall, and M. B. Colket. 1999. Computational and experimental study of soot formation in a coflow, laminar diffusion flame. Combus. Flame 117 (1–2):117–39. doi:10.1016/S0010-2180(98)00096-0.
  • Veshkini, A., S. B. Dworkin, and M. J. Thomson. 2014. A soot particle surface reactivity model applied to a wide range of laminar ethylene/air flames. Combus. Flame 161 (12):3191–200. doi:10.1016/j.combustflame.2014.05.024.
  • Wen, Z., S. Yun, M. J. Thomson, and M. F. Lightstone. 2003. Modeling soot formation in turbulent kerosene/air jet diffusion flames. Combus. Flame 135 (3):323–40. doi:10.1016/S0010-2180(03)00179-2.
  • Wen, J. Z., M. J. Thomson, M. F. Lightstone, S. H. Park, and S. N. Rogak. 2006. An improved moving sectional aerosol model of soot formation in a plug flow reactor. Combust. Sci. Technol 178 (5):921–51. doi:10.1080/00102200500270007.
  • Xu, F., P. Sunderland, and G. Faeth. 1997. Soot formation in laminar premixed ethylene/air flames at atmospheric pressure. Combus. Flame 108 (4):471–93. doi:10.1016/S0010-2180(96)00200-3.
  • Xu, F., A. M. El-Leathy, C. H. Kim, and G. M. Faeth. 2003. Soot surface oxidation in hydrocarbon/air diffusion flames at atmospheric pressure. Combus. Flame 132 (1–2):43–57. doi:10.1016/S0010-2180(02)00459-5.
  • Young, K. J., C. D. Stewart, K. J. Syed, and J. B. Moss. 1991. Soot formation in confined turbulent flames fuelled by pre-vaporised kerosine and by ethylene. Proc. Tenth ISABE Meeting, AIAA, Nottingham, UK, 10, 239.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.