262
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Nonlinear Dynamic Analysis of the Transition from MILD Regime to Thermoacoustic Instability in a Reverse Flow Combustor

, , ORCID Icon &
Pages 868-891 | Received 07 Jan 2022, Accepted 19 Jul 2022, Published online: 25 Jul 2022

References

  • Arghode, V. K., and A. K. Gupta. 2010. Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion. Appl. Energy 87 (5):1631–40. doi:10.1016/j.apenergy.2009.09.032.
  • Arghode, V. K., A. K. Gupta, and K. M. Bryden. 2012. High intensity colorless distributed combustion for ultra low emissions and enhanced performance. Appl. Energy 92:822–30. doi:10.1016/j.apenergy.2011.08.039.
  • Bobba, M. K. 2007, ‘Flame stabilization and mixing characteristics in a stagnation point reverse flow combustor,’ PhD thesis, Georgia Institute of Technology.
  • Bobba, M. K., P. Gopalakrishnan, K. Periagaram, and J. M. Seitzman 2007, ‘Flame structure and stabilization mechanisms in a stagnation point reverse flow combustor’, Proceedings of the ASME Turbo Expo, 14-17 May, 2007, Montreal, Canada, 879–88.
  • Brunton, S. L., and J. N. Kutz. 2019. Data-driven science and engineering. Cambridge: Cambridge University Press.
  • De, S., A. Bhattacharya, S. Mondal, A. Mukhopadhyay, and S. Sen. 2020. Application of recurrence quantification analysis for early detection of lean blowout in a swirl-stabilized dump combustor Application of recurrence quantification analysis for early detection of lean blowout in a swirl-stabilized dump combustor. Chaos 30 (4):043115. doi:10.1063/1.5131231.
  • De, S., A. Bhattacharya, S. Mondal, A. Mukhopadhyay, and S. Sen. 2021. Early detection of lean blowout in a combustor using symbolic analysis of colour images. Measurement 186:110113. doi:10.1016/j.measurement.2021.110113.
  • Ding, S., E. Song, L. Yang, G. Litak, Y. Wang, C. Yao, and X. Ma. 2017. Analysis of chaos in the combustion process of premixed natural gas engine. Appl. Therm. Eng 121:768–78. doi:10.1016/j.applthermaleng.2017.04.109.
  • Eckmann, J. P., S. O. Kamphorst, and D. Ruelle. 1987. Recurrence plots of dynamical systems. Europhys. Lett 4 (9):973–77. doi:10.1209/0295-5075/4/9/004.
  • Gotoda, H., H. Nikimoto, T. Miyano, and S. Tachibana. 2012. Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos 21 (1):013124. doi:10.1063/1.3563577.
  • Gottwald, G. A., and I. Melbourne. 2006. Testing for chaos in deterministic systems with noise. Physica D 212 (1–2):100–10. doi:10.1016/j.physd.2005.09.011.
  • Grassberger, P., and I. Procaccia. 1983. Characterisation of strange attactors. Phys. Rev. Lett 50 (5):346–49. doi:10.1103/PhysRevLett.50.346.
  • Grassberger, P., and I. Procaccia. 2004. Measuring the strangeness of strange attractors. Physica D:189–90.
  • Gupta, M., S. Pramanik, and R. V. Ravikrishna. 2016. Development of a syngas-fired catalytic combustion system for hybrid solar-thermal applications. Appl. Therm. Eng 109:1023–30. doi:10.1016/j.applthermaleng.2016.04.150.
  • Harikrishnan, K. P., R. Misra, G. Ambika, and A. K. Kembhavi. 2006. A non-subjective approach to the GP algorithm for analysing noisy time series. Physica D 215 (2):137–45. doi:10.1016/j.physd.2006.01.027.
  • Hernandez-Rivera, R., G. Troiani, T. Pagliaroli, and A. Hernandez-Guerrero. 2019. Detection of the thermoacoustic combustion instabilities of a slot burner based on a diagonal-wise recurrence quantification Detection of the thermoacoustic combustion instabilities of a slot burner based on a diagonal-wise recurrence quantification. Phys. Fluids 31 (12):124105. doi:10.1063/1.5124015.
  • Hiroshi, T., A. K. Gupta, T. Hasegawa, M. Katsuki, K. Kishimoto, and M. Morita. 2003. ‘High temperature air combustion: From energy conservation to pollution reduction. 1st ed.)’ ed. Boca Raton: CRC Press.
  • Huang, Y., and V. Yang. 2009. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci 35 (4):293–364.
  • Juniper, M. P., and R. I. Sujith. 2018. Sensitivity and nonlinearity of thermoacoustic oscillations. Annu. Rev. Fluid Mech 50 (1):661–89. doi:10.1146/annurev-fluid-122316-045125.
  • Kennel, M. B., R. Brown, and H. D. I. Abarbanel. 1992. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev., A 61 (243):402.
  • Krishna, S., and R. V. Ravikrishna. 2015. Optical diagnostics of fuel-air mixing and vortex formation in a cavity combustor. Exp. Therm. Fluid Sci 61:163–76. doi:10.1016/j.expthermflusci.2014.10.012.
  • Kruse, S., B. Kerschgens, L. Berger, E. Varea, and H. Pitsch. 2015. Experimental and numerical study of MILD combustion for gas turbine applications. Appl. Energy 148:456–65. doi:10.1016/j.apenergy.2015.03.054.
  • Kulp, C. W., and L. Zunino. 2016. Discriminating chaotic and stochastic dynamics through the permutation spectrum test. Chaos 24 (3):033116. doi:10.1063/1.4891179.
  • Lieuwen, T. 2003. Modeling premixed combustion – acoustic wave interactions: A review. J. Propuls. Power 19 (5):765–81. doi:10.2514/2.6193.
  • Marwan, N., M. C. Romano, M. Thiel, and J. Kurths. 2007. Recurrence plots for the analysis of complex systems. Phys Rep 438 (5–6):237–329. doi:10.1016/j.physrep.2006.11.001.
  • Nair, V., G. Thampi, S. Karuppusamy, S. Gopalan, and R. I. Sujith. 2013. Loss of chaos in combustion noise as a precursor of impending combustion instability. Int. J. Spray Combust. Dyn 5 (4):273–90. doi:10.1260/1756-8277.5.4.273.
  • Nair, V., and R. I. Sujith. 2015. A reduced-order model for the onset of combustion instability : Physical mechanisms for intermittency and precursors. Proc. Combust. Inst 35 (3):3193–200. doi:10.1016/j.proci.2014.07.007.
  • Nayfeh, A. H., and B. Balachandran. 2008. Applied nonlinear dynamics: Analytical, computational, and experimental methods. Weinheim, Germany: John Wiley and Sons.
  • Parlitz, U., S. Berg, S. Luther, A. Schirdewan, J. Kurths, and N. Wessel. 2012. Classifying cardiac biosignals using ordinal pattern statistics and symbolic dynamics. Comput. Biol. Med 42 (3):319–27. doi:10.1016/j.compbiomed.2011.03.017.
  • Pawar, S. A., M. Raghunathan, K. V. Reeja, P. R. Midhun, and R. I. Sujith (2020) ‘Effect of preheating of the reactants on the transition to thermoacoustic instability in a bluff-body stabilized dump combustor’, Proc. Combust. Inst 38 (4):1–9.
  • Perpignan, A. A. V., A. Gangoli Rao, and D. J. E. M. Roekaerts. 2018. Flameless combustion and its potential towards gas turbines. Prog. Energy Combust. Sci 69:28–62. doi:10.1016/j.pecs.2018.06.002.
  • Pramanik, S., and R. V. Ravikrishna. 2020a. Detached Eddy Simulation of syngas combustion in a reverse-flow configuration. Int. J. Hydrogen Energy 45 (51):27846–63. doi:10.1016/j.ijhydene.2020.07.058.
  • Pramanik, S., and R. V. Ravikrishna. 2020b. Effect of N2 dilution and preheat temperature on combustion dynamics of syngas in a reverse-flow combustor. Exp. Therm. Fluid Sci 110:109926. doi:10.1016/j.expthermflusci.2019.109926.
  • Reddy, V. M., D. Sawant, D. Trivedi, and S. Kumar. 2013. Studies on a liquid fuel based two stage flameless combustor. Proc. Combust. Inst 34 (2):3319–26. doi:10.1016/j.proci.2012.06.028.
  • Rona, A. 2007. The acoustic resonance of rectangular and cylindrical cavities. J Algorithm Comput Technol 1 (3):329–56. doi:10.1260/174830107782424110.
  • Sen, U., T. Gangopadhyay, C. Battacharya, A. Mukhopadhyay, and S. Sen. 2017. Dynamic Characterization of a ducted inverse diffusion flame using dynamic characterization of a ducted inverse diffusion flame using recurrence analysis. Combust. Sci. Technol 190 (1):32–56. doi:10.1080/00102202.2017.1374952.
  • Shanbhogue, S. J., Y. S. Sanusi, S. Taamallah, M. A. Habib, E. M. A. Mokheimer, and A. F. Ghoniem. 2016. Flame macrostructures, combustion instability and extinction strain scaling in swirl-stabilized premixed CH4/H2 combustion. Combust. Flame 163:494–507. doi:10.1016/j.combustflame.2015.10.026.
  • Sharma, S., A. Chowdhury, and S. Kumar. 2020. Effect of CO2/N2 dilution on characteristics of liquid fuel combustion in flameless combustion mode. Combust. Sci. Technol 194:721–744. doi:10.1080/00102202.2020.1780582.
  • Tony, J., A. Gopalakrishna, E. Sreeelekha, and R. I. Sujith. 2015. Detecting deterministic nature of pressure measurements from a turbulent combustor. Phys. Rev. E 92 (62902):1–11. doi:10.1103/PhysRevE.92.062902.
  • Troiani, G., and T. Pagliaroli. 2018. Chaotic analysis of the thermoacoustic instabilities of a trapped vortex combustor, 2018 AIAA/CEAS Aeroacoustics Conference, June 25-29, 2018, Atlanta, Georgia, p. 4104.
  • Veríssimo, A. S., A. M. A. Rocha, and M. Costa. 2011. Operational, combustion, and emission characteristics of a small-scale combustor. Energy Fuels 25 (6):2469–80. doi:10.1021/ef200258t.
  • Vishnu, R., R. I. Sujith, and P. Aghalayam. 2014. Role of flame dynamics on the bifurcation characteristics of a ducted V flame. Combust. Sci. Technol 187:37–41 doi:10.1080/00102202.2014.979287.
  • Wuenning, J. A., and J. G. Wuenning. 1997. Flameless oxidation to reduce thermal {NO}-formation. Prog. Energy Combust. Sci 23 (1):81–94. doi:10.1016/S0360-1285(97)00006-3.
  • Zhao, D., E. Gutmark, and P. D. Goey. 2018. A review of cavity-based trapped vortex, ultra-compact, high-g, inter-turbine combustors. Prog. Energy Combust. Sci 66:42–82. doi:10.1016/j.pecs.2017.12.001.
  • Zhao, X., B. Shi, W. Peng, Q. Cao, D. Xie, W. Dong, and N. Wang. 2019. Effects of N2 and CO2 dilution on the combustion characteristics of C3H8/O2 mixture in a swirl tubular flame burner. Exp. Therm. Fluid Sci 100:251–58. doi:10.1016/j.expthermflusci.2018.09.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.