254
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Development of novel urea burning rate suppressants in AP/HTPE propellants with superior efficiency and desirable mechanical performance

ORCID Icon, &
Pages 892-905 | Received 08 May 2022, Accepted 19 Jul 2022, Published online: 26 Jul 2022

References

  • Anniyappan, M., M. B. Talawar, R. K. Sinha, and K. P. S. Murthy. 2020. Review on advanced energetic materials for insensitive munition formulations. Combust Explos Shock Waves 56:495–519. doi:10.1134/S0010508220050019.
  • Chen, Y., Y. F. Liu, L. Shi, W. Yang, and W. S. Yao. 2015. Study on the synthesis and interfacial interaction performance of novel dodecylamine-based bonding agents used for composite solid propellants. Propell. Explos. Pyro 40:50–59. doi:10.1002/prep.201300187.
  • Cheng, T. 2019. Review of novel energetic polymers and binders-high energy propellant ingredients for the new space race. Des Monomers Polym 22:54–65. doi:10.1080/15685551.2019.1575652.
  • Dave, P. N., R. Thakkar, R. Sirach, D. M. Badgujar, and M. P. Deshpande. 2022a. NiCoZn Ferrite: Burn rate enhancer for AP/HTPB based propellant and its catalytic study on the decomposition of ammonium perchlorate. J. Energ. Mater doi:10.1080/07370652.2021.1968072.
  • Dave, P. N., R. Thakkar, R. Sirach, and S. Chaturvedi. 2022b. Effect of copper ferrite (CuFe2O4) in the thermal decomposition of modified nitrotriazolone. Mater. Adv 3:5019–26. doi:10.1039/D2MA00250G.
  • Dave, P. N., R. Thakkar, R. Sirach, M. P. Deshpande, and S. Chaturvedi. 2022c. Effect of nanosize zinc ferrite on thermolysis of ammonium perchlorate. J. Electron. Mater 51:785–92. doi:10.1007/s11664-021-09335-3.
  • Deng, J., X. Wang, G. Li, and Y. Luo. 2017. Effect of bonding agent on the mechanical properties of GAP high-energy propellant. Propell. Explos. Pyro 42:394–400. doi:10.1002/prep.201600123.
  • Dey, A., V. G. Ghorpade, A. Kumar, and M. Gupta. 2014. Biuret: A potential burning rate suppressant in ammonium chlorate (VII) based composite propellants. Cent. Eur. J. Energ. Mater 11:3–13.
  • Gaunce, M. T., and J. R. Osborn. 1986. Temperature sensitivity coefficients of solid propellant burning rate. Acta Astronautica 13 (3):127–30. doi:10.1016/0094-5765(86)90044-5.
  • Ghorpade, V. G., A. Dey, L. S. Jawale, A. M. Kotbagi, A. Kumar, and M. Gupta. 2010. Study of burn rate suppressants in AP-Based composite propellants. Propell. Explos. Pyro 35:53–56.
  • Glaskova, A. P. 1974. Three possible ways of inhibition of the ammoniumperchlorate combustion process. In 12th Aerospace Sciences Meeting, 74–120. AIAA.
  • Gong, L., J. Li, Y. Li, and R. Yang. 2020. Combustion properties of composite propellants based on two kinds of polyether binders and different oxidizers. Propell. Explos. Pyro 45:1634–44.
  • Hamilton, R. S., G. K. Lund, and R. M. Hajik. 2015. Solid propellant bonding agents and methods for their use. US Patent 9,181,140.
  • Han, X., L. Zhou, S. Cao, L. Zhang, G. Xiang, and J. F. Chen. 2021. Exploring the roles of ZIF-67 as an energetic additive in the thermal decomposition of ammonium Perchlorate. Energy Fuels 35:4447–56.
  • Hu, Y. H., B. W. Tao, F. Shang, M. X. Zhou, D. Y. Hao, R. Q. Fan, D. B. Xia, Y. L. Yang, A. M. Pang, and K. F. Lin. 2020. Thermal decomposition of ammonium perchlorate over perovskite catalysts: Catalytic decomposition behavior, mechanism and application. Appl. Surf. Sci 513:145849.
  • Isert, S., L. J. Groven, R. P. Lucht, and S. F. Son. 2015. The effect of encapsulated nanosized catalysts on the combustion of composite solid propellants. Combust. Flame 162:1821–28.
  • Kawamoto, A. M., and M. Wills. 2002. Enantioselective synthesis of aziridines using asymmetric transfer hydrogenation as a precursor for chiral derivatives used as bonding agent for rocket solid propellants. Quim. Nova 25:921–25.
  • Li, H. T., S. Xu, L. F. Song, Y. Wang, and A. M. Pang. 2021. Thermal decomposition of AP catalyzed by nano zno cube and its application in HTPE propellants. Chin. J. Explos. Propellants 44:89–95.
  • Liu, Y., S. Jin, H. Yang, S. Li, W. Xie, Y. Zhao, W. Zhang, Y. Chen, and X. Fan. 2021. Application of 3D energetic metal-organic frameworks containing Cu as the combustion catalyst to composite solid propellant. Combust. Flame 225:57–64.
  • Oliveira, J. I. S., D. C. Pires, M. F. Diniz, J. L. Siqueira, E. C. Mattos, L. C. Rezende, K. Iha, and R. C. L. Dutra. 2014. Determination of primary amine content in bonding agent used in composite solid propellants. Propell. Explos. Pyro 39:538–44.
  • Pang, W. Q., X. Z. Fan, K. Wang, Y. M. Chao, H. X. Xu, Z. Qin, and F. Q. Zhao. 2020. Al-based nano-sized composite energetic materials (Nano-CEMs): preparation, characterization, and performance. Nanomaterials (Basel) 10:1039.
  • Pang, W. Q., L. T. DeLuca, K. Wang, H. X. Xu, L. Q. Xiao, X. Z. Fan, and H. Li. 2021. Effect of hydroborate iron additives (BH-Fe) on the properties of composite solid rocket propellants. J. Phys.: Conf. Ser 1721:012006.
  • Park, S., S. Choi, K. Kim, W. Kim, and J. Park. 2020. Effects of ammonium perchlorate particle size, ratio, and total contents on the properties of a composite solid propellant. Propell. Explos. Pyro 45:1376–81.
  • Poulain, X., V. Lefèvre, O. Lopez-Pamies, and K. Ravi-Chandar. 2017. Damage in elastomers: Nucleation and growth of cavities, micro-cracks, and macro-cracks. Int. J. Fract 205:1–21.
  • Sangtyani, R., H. S. Saha, A. Kumar, M. Gupta, and P. V. Chavan. 2019. An alternative approach to improve burning rate characteristics and processing parameters of composite propellant. Combust. Flame 209:357–62.
  • Sun, Y. L., S. F. Li, and D. H. Ding. 2006. Effect of Ammonium Oxalate/Strontium Carbonate on the Burning Rate Characteristics of Composite Propellants. J. Therm. Anal. Calorim 86:497–503.
  • Toulemonde, P. A., J. Diani, P. Gilormini, and N. Desgardin. 2016. On the account of a cohesive interface for modeling the behavior until break of highly filled elastomers. Mech. Mater 93:124–33.
  • Trache, D., F. Maggi, I. Palmucci, L. T. DeLuca, K. Khimeche, M. Fassina, S. Dossi, and G. Colombo. 2015. Effect of amide-based compounds on the combustion characteristics of composite solid rocket propellants. Arabian J. Chem 12:3639–51.
  • Trache, D., F. Maggi, I. Palmucci, and L. T. DeLuca. 2018. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J. Therm. Anal. Calorim 132:1601–15.
  • William, M. J. P., and H. M. Whitehead. 1969. Decomposition and combustion of ammonium perchlorate. Chem. Rev 69:551–90.
  • Xu, S., Z. Wu, A. M. Pang, H. X. Li, and G. Tang. 2018. Application of nitrile butadiene rubber bonding agents in CL-20/GAP System. Chin. J. Explos. Propellants 41:578–81.
  • Xu, S., A. M. Pang, Z. Wu, H. T. Li, W. Li, and J. Kong. 2021. Synthesis of polyetheramine based bonding agents and their effect on mechanical properties of an AP/CL-20/GAP Formulation. Propell. Explos. Pyro 46:1216–26.
  • Xu, S., A. M. Pang, Y. Wang, X. Z. Pan, S. W. Li, H. T. Li, and J. Kong. 2022. A review on the use of burning rate suppressants in AP‐based composite propellants. Propell. Explos. Pyro 47:e202000327.
  • Yadav, A., C. S. Pant, and S. Das. 2020. Research advances in bonding agents for composite propellants. Propell. Explos. Pyro 45:695–704.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.