476
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Flame Acceleration and DDT in a Channel with Continuous Triangular Obstacles: Effect of Blockage Ratio

, , , , &
Pages 1554-1574 | Received 12 Apr 2022, Accepted 31 Aug 2022, Published online: 07 Sep 2022

References

  • Ballossier, Y., F. Virot, and J. Melguizo-Gavilanes. 2021. Strange wave formation and detonation onset in narrow channels. J. Loss Prev. Process Ind 72:104535. doi:10.1016/j.jlp.2021.104535.
  • Burke, M. P., M. Chaos, Y. Ju, F. L. Dryer, and S. J. Klippenstein. 2012. Comprehensive H2/O2 kinetic model for high-pressure combustion. Int. J. Chem. Kinet 44 (7):444–74. doi:10.1002/kin.20603.
  • Bychkov, V., D. Valiev, and L. E. Eriksson. 2008. Physical mechanism of ultrafast flame acceleration. Phys. Rev. Lett. 101 (16):95–98. doi:10.1103/PhysRevLett.101.164501.
  • Ciccarelli, G., and S. Dorofeev. 2008. Flame acceleration and transition to detonation in ducts. Prog. Energy Combust. Sci 34 (4):499–550. doi:10.1016/j.pecs.2007.11.002.
  • Di Sarli, V., A. Di Benedetto, G. Russo, S. Jarvis, E. J. Long, and G. K. Hargrave. 2009. Large eddy simulation and piv measurements of unsteady premixed flames accelerated by obstacles. Flow Turbul. Combust 83 (2):227–50. doi:10.1007/s10494-008-9198-3.
  • Dziemińska, E., and A. K. Hayashi. 2013. Auto-Ignition and DDT driven by shock wave – Boundary layer interaction in oxyhydrogen mixture. Int. J. Hydrogen Energy 38 (10):4185–93. doi:10.1016/j.ijhydene.2013.01.111.
  • Edwards, D. H., G. O. Thomas, and M. A. Nettleton. 1979. The diffraction of a planar detonation wave at an abrupt area change. J. Fluid. Mech 95 (1):79–96. doi:10.1017/S002211207900135X.
  • Fay, J. A. 1959. Two‐dimensional gaseous detonations: velocity deficit. Phys. Fluids 2 (3):283–89. doi:10.1063/1.1705924.
  • Gooderum, P. B. 1958. An experimental study of the turbulent boundary layer on a shock-tube wall. NACA Technical Note 4243. https://ntrs.nasa.gov/api/citations/19930085207/downloads/19930085207.pdf
  • Goodwin, G. B., R. W. Houim, and E. S. Oran. 2016. Effect of decreasing blockage ratio on DDT in small channels with obstacles. Combust. Flame 173:16–26. doi:10.1016/j.combustflame.2016.07.029.
  • Goodwin, G., H. Moffat, and R. Speth. 2017. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.3.0 170284, URL. doi:10.5281/zenodo.
  • Hardalupas, Y., and M. Orain. 2004. Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame. Combust. Flame 139 (3):188–207. doi:10.1016/j.combustflame.2004.08.003.
  • Hong, S., R. L. Speth, S. J. Shanbhogue, and A. F. Ghoniem. 2013. Examining flow-flame interaction and the characteristic stretch rate in vortex-driven combustion dynamics using PIV and numerical simulation. Combust. Flame 160 (8):1381–97. doi:10.1016/j.combustflame.2013.02.016.
  • Houim, R. W., and E. Oran. 2017. Effect of surface roughness on deflagration-to-detonation transition in submilimeter channels. 26th international colloquium on the dynamics of explosions and reactive systems, Boston, MA, USA. http://www.icders.org/ICDERS2017/abstracts/ICDERS2017-1067.pdf
  • Ishihara, S., K. Ishii, and H. Kataoka. 2017. Mechanism of detonation transition from accelerating flames in a channel. Proc. Combust. Inst 36 (2):2753–59. doi:10.1016/j.proci.2016.07.095.
  • Ishii, K., and M. Monwar. 2011. Detonation propagation with velocity deficits in narrow channels. Proc. Combust. Inst 33 (2):2359–66. doi:10.1016/j.proci.2010.07.051.
  • Johansen, C., and G. Ciccarelli. 2009. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel. Combust. Flame 156 (2):405–16. doi:10.1016/j.combustflame.2008.07.010.
  • Kaneshige, M., and J. E. Shepherd 1997. Detonation Database, Technical Report FM97-8, CALCIT.
  • Khokhlov, A. M., and E. S. Oran. 1999. Numerical simulation of detonation initiation in a flame brush: The role of hot spots. Combust. Flame 119 (4):400–16. doi:10.1016/S0010-2180(99)00058-9.
  • Kuznetsov, M. S., V. I. Alekseev, and S. B. Dorofeev. 2000. Comparison of critical conditions for DDT in regular and irregular cellular detonation systems. Shock. Waves 10:217–23. doi:10.1007/s001930050009.
  • Kuznetsov, M., V. Alekseev, I. Matsukov, and S. Dorofeev. 2005. DDT in a smooth tube filled with a hydrogen–oxygen mixture. Shock. Waves 14:205–15. doi:10.1007/s00193-005-0265-6.
  • Kuznetsov, M., M. Liberman, and I. Matsukov. 2010. Experimental study of the preheat zone formation and deflagration to detonation transition. Combust. Sci. Technol 182 (11–12):1628–44. doi:10.1080/00102202.2010.497327.
  • Lee, J. H., R. Knystautas, and C. K. Chan. 1985. Turbulent flame propagation in obstacle-filled tubes. Proc. Combust. Inst 20 (1):1663–72. doi:10.1016/S0082-0784(85)80662-7.
  • Liberman, M. A., M. F. Ivanov, A. D. Kiverin, M. S. Kuznetsov, A. A. Chukalovsky, and T. V. Rakhimova. 2010. Deflagration-To-Detonation transition in highly reactive combustible mixtures. Acta Astronaut. 67 (7–8):688–701. doi:10.1016/j.actaastro.2010.05.024.
  • Liu, D., Z. Liu, and H. Xiao. 2022. Flame acceleration and deflagration-to-detonation transition in narrow channels filled with stoichiometric hydrogen-air mixture. Int. J. Hydrogen Energy 47 (20):11052–67. doi:10.1016/j.ijhydene.2022.01.135.
  • Li, X., H. Xiao, Q. Duan, and J. Sun. 2021. Numerical study of premixed flame dynamics in a closed tube: Effect of wall boundary condition. Proc. Combust. Inst 38 (2):2075–82. doi:10.1016/j.proci.2020.08.032.
  • Maeda, S., M. Fujisawa, S. Ienaga, K. Hirahara, and T. Obara. 2019. Effect of sandpaper-like small wall roughness on deflagration-to-detonation transition in a hydrogen–oxygen mixture. Proc. Combust. Inst 37 (3):3609–16. doi:10.1016/j.proci.2018.07.119.
  • Matalon, M., and P. Metzener. 1997. The propagation of premixed flames in closed tubes. J. Fluid. Mech 336:331–50. doi:10.1017/S0022112096004843.
  • Oran, E. S., G. Chamberlain, and A. Pekalski. 2020. Mechanisms and occurrence of detonations in vapor cloud explosions. Prog. Energy Combust. Sci 77:100804. doi:10.1016/j.pecs.2019.100804.
  • Ott, J. D., E. S. Oran, and J. D. Anderson. 2003. A mechanism for flame acceleration in narrow tubes. AIAA J. 41 (7):1391–96. doi:10.2514/2.2088.
  • Pan, Z., K. Chen, J. Pan, P. Zhang, Y. Zhu, and J. Qi. 2017. An experimental study of the propagation characteristics for a detonation wave of ethylene/oxygen in narrow gaps. Exp. Therm Fluid Sci 88:354–60. doi:10.1016/j.expthermflusci.2017.06.015.
  • Radulescu, M. I., and J. H. S. Lee. 2002. The failure mechanism of gaseous detonations: Experiments in porous wall tubes. Combust. Flame 131 (1–2):29–46. doi:10.1016/S0010-2180(02)00390-5.
  • Shen, T., and H. Xiao. 2022. Numerical study of the stability of premixed flames propagating in half-open tubes. Combust. Theor. Model 26 (4):774–95. doi:10.1080/13647830.2022.2069601.
  • Sivashinsky, G. I. 2002. Some developments in premixed combustion modeling. Proc. Combust. Inst 29 (2):1737–61. doi:10.1016/S1540-7489(02)80213-9.
  • Speth, R. L., S. Hong, S. J. Shanbhogue, and A. Ghoniem 2011. “Mode selection in flame-vortex driven combustion instabilities.” In 49th AIAA Aerospace Sciences Meeting. Orlando, Florida. https://arc.aiaa.org/doi/pdf/10.2514/6.2011-236
  • Teodorczyk, A., J. H. S. Lee, and R. Knystautas. 1989. Propagation mechanism of quasi-detonations, Proc. Combust. Inst 22 (1):1723–31. doi:10.1016/S0082-0784(89)80185-7.
  • Valiev, D., V. Bychkov, V. Akkerman, C. K. Law, and L. Eriksson. 2010. Flame acceleration in channels with obstacles in the deflagration-to-detonation transition. Combust. Flame 157 (5):1012–21. doi:10.1016/j.combustflame.2009.12.021.
  • Wei, H., J. Zhao, L. Zhou, D. Gao, and Z. Xu. 2017. Effects of the equivalence ratio on turbulent flame–shock interactions in a confined space. Combust. Flame 186:247–62. doi:10.1016/j.combustflame.2017.08.009.
  • Xiao, H., R. W. Houim, and E. S. Oran. 2015. Formation and evolution of distorted tulip flames. Combust. Flame 162 (11):4084–101. doi:10.1016/j.combustflame.2015.08.020.
  • Xiao, H., D. Makarov, J. Sun, and V. Molkov. 2012. Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct. Combust. Flame 159 (4):1523–38. doi:10.1016/j.combustflame.2011.12.003.
  • Xiao, H., and E. S. Oran. 2019. Shock focusing and detonation initiation at a flame front. Combust. Flame 203:397–406. doi:10.1016/j.combustflame.2019.02.012.
  • Xiao, H., and E. S. Oran. 2020. Flame acceleration and deflagration-to-detonation transition in hydrogen-air mixture in a channel with an array of obstacles of different shapes. Combust. Flame 220:378–93. doi:10.1016/j.combustflame.2020.07.013.
  • Xiao, H., J. Sun, and X. He. 2018. A study on the dynamic behavior of premixed propane-air flames propagating in a curved combustion chamber. Fuel 228:342–48. doi:10.1016/j.fuel.2018.04.165.
  • Yanez, J., and M. Kuznetsov. 2016. Experimental study and theoretical analysis of a ‘strange wave. Combust. Flame 167:494–96. doi:10.1016/j.combustflame.2016.02.004.
  • Zhang, P., Z. Pan, Y. Zhu, Q. Wang, Z. He, and J. Pan. 2021. Experimental study on the deflagration-to-detonation transition distance in millimeter-scale smooth tubes. AIAA J. 59:3144–51. doi:10.2514/1.J060047.
  • Zhang, C., X. Shen, J. X. Wen, and G. Xiu. 2020. The behavior of methane/hydrogen/air premixed flame in a closed channel with inhibition. Fuel 265:116810. doi:10.1016/j.fuel.2019.116810.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.