939
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Temperature Stratification Induced Ignition Regimes for Gasoline Surrogates at Engine-Relevant Conditions

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 1702-1742 | Received 03 Jul 2022, Accepted 11 Sep 2022, Published online: 04 Oct 2022

References

  • Amann, M., T. Alger, and D. Mehta. 2011. The effect of egr on low-speed pre-ignition in boosted si engines. SAE Int. J. Engines 4 (1):235–45. doi:10.4271/2011-01-0339.
  • Astm, D. 2021. D2699-21 standard test method for research octane number of spark-ignition engine fuel. Am. Soc. Test Mater. (ASTM). doi:10.1520/D2699-21ICS.
  • Astm, D. 2022. D2700-22 standard test method for motor octane number of spark- ignition engine fuel. Am. Soc. Test Mater. (ASTM). doi:10.1520/D2700-22ICS.
  • Bates, L., D. Bradley, G. Paczko, and N. Peters. 2016. Engine hot spots: Modes of auto-ignition and reaction propagation. Combust. Flame 166:80–85. doi:10.1016/j.combustflame.2016.01.002.
  • Bradley, D., and R. Head. 2006. Engine autoignition: The relationship between octane numbers and autoignition delay times. Combust. Flame 147 (3):171–84. doi:10.1016/j.combustflame.2006.09.001.
  • Bradley, D., C. Morley, X. Gu, and D. Emerson. 2002. Amplified pressure waves during autoignition: Relevance to cai engines. SAE Trans. 111:2679–90.
  • Bradley, D., C. Morley, and H. Walmsley (2004), Relevance of research and motor octane numbers to the prediction of engine autoignition, Technical report, SAE Technical Paper.
  • Cheng, S., D. Kang, A. Fridlyand, S. S. Goldsborough, C. Saggese, S. Wagnon, M. J. McNenly, M. Mehl, W. J. Pitz, and D. Vuilleumier. 2020. Autoignition behavior of gasoline/ethanol blends at engine-relevant conditions. Combust. Flame 216:369–84. doi:10.1016/j.combustflame.2020.02.032.
  • Comaniciu, D., and P. Meer. 2002. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24 (5):603–19. doi:10.1109/34.1000236.
  • Dai, P., and Z. Chen. 2015. Supersonic reaction front propagation initiated by a hot spot in n-heptane/air mixture with multistage ignition. Combust. Flame 162 (11):4183–93. doi:10.1016/j.combustflame.2015.08.002.
  • Dai, P., Z. Chen, S. Chen, and Y. Ju. 2015. Numerical experiments on reaction front propagation in n-heptane/air mixture with temperature gradient. Proc. Combust. Inst. 35 (3):3045–52. doi:10.1016/j.proci.2014.06.102.
  • Dai, P., Z. Chen, X. Gan, and M. A. Liberman. 2021. Autoignition and detonation development from a hot spot inside a closed chamber: Effects of end wall reflection. Proc. Combust. Inst. 38 (4):5905–13. doi:10.1016/j.proci.2020.09.025.
  • Davidenko, D., R. M´evel, and G. Dupr´e. 2011. Numerical study of the detonation structure in rich h 2- no 2/n 2 o 4 and very lean h 2- n 2 o mixtures. Shock Waves 21 (2):85–99. doi:10.1007/s00193-011-0297-z.
  • Goodwin, D. G., R. L. Speth, H. K. Moffat, and B. W. Weber. 2018. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and trans- port processes. Version 2.4.0.
  • Gorbatenko, I., D. Bradley, and A. S. Tomlin. 2021. Auto-Ignition and detonation of n-butanol and toluene reference fuel blends (trf). Combust. Flame 229:111378. doi:10.1016/j.combustflame.2021.02.024.
  • Greenshields, C. J., H. G. Weller, L. Gasparini, and J. M. Reese. 2010. Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer. Methods Fluids 63 (1):1–21.
  • Griffiths, J., and S. Scott. 1987. Thermokinetic interactions: Fundamentals of spontaneous ignition and cool flames. Prog. Energy Combust. Sci. 13 (3):161–97. doi:10.1016/0360-1285(87)90010-4.
  • Gu, X., D. Emerson, and D. Bradley. 2003. Modes of reaction front propagation from hot spots. Combust. Flame 133 (1–2):63–74. doi:10.1016/S0010-2180(02)00541-2.
  • Han, W., J. Huang, W. Liang, C. Wang, R. M´evel, and C. K. Law. 2021. Unsteady propagation of detonation with multi-stage heat release. Fuel 296:120666. doi:10.1016/j.fuel.2021.120666.
  • Joubert, F., D. Desbordes, and H. -N. Presles. 2008. Detonation cellular structure in no2/n2o4–fuel gaseous mixtures. Combust. Flame 152 (4):482–95. doi:10.1016/j.combustflame.2007.11.005.
  • Ju, Y., W. Sun, M. P. Burke, X. Gou, and Z. Chen. 2011. Multi-Timescale modeling of ignition and flame regimes of n-heptane-air mixtures near spark assisted homogeneous charge compression ignition conditions. Proc. Combust. Inst. 33 (1):1245–51. doi:10.1016/j.proci.2010.06.110.
  • Kalghatgi, G. T., and D. Bradley. 2012. Pre-Ignition and ‘super-knock’ in turbo-charged spark-ignition engines. Int. J. Engine Res. 13 (4):399–414. doi:10.1177/1468087411431890.
  • Kalghatgi, G., D. Bradley, J. Andrae, and A. Harrison (2009), The nature of ‘super- knock’and its origins in si engines. ‘IMechE conference on internal combustion engines: performance fuel economy and emissions’ London, 8–9.
  • Kao, S., and J. Shepherd (2008). Numerical solution methods for control volume explosions and znd detonation structure. Galcit report fm 2006. 7, 1–46.
  • Karimkashi, S., H. Kahila, O. Kaario, M. Larmi, and V. Vuorinen. 2020. A numerical study on combustion mode characterization for locally stratified dual-fuel mixtures. Combust. Flame 214:121–35. doi:10.1016/j.combustflame.2019.12.030.
  • Khodadadi Azadboni, R., A. Heidari, and J. X. Wen. 2018. A computational fluid dynamic investigation of inhomogeneous hydrogen flame acceleration and transition to detonation. Flow Turbul. Combust. 101 (4):1009–21. doi:10.1007/s10494-018-9977-4.
  • Kiverin, A. D., D. R. Kassoy, M. F. Ivanov, and M. A. Liberman. 2013. Mechanisms of ignition by transient energy deposition: Regimes of combustion wave propagation. Phys. Rev. E 87 (3):033015. doi:10.1103/PhysRevE.87.033015.
  • Kurganov, A., and E. Tadmor. 2000. New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160 (1):241–82. doi:10.1006/jcph.2000.6459.
  • Larose, D. T. 2005. Discovering Knowledge in Data - An Introduction to Data Mining. Hoboken, New Jersey: Wiley.
  • Lee, J. H. 2008. The detonation phenomenon. Cambridge, England: Cambridge University Press.
  • Leung, C., M. Radulescu, and G. Sharpe. 2010. Characteristics analysis of the one- dimensional pulsating dynamics of chain-branching detonations. Phys. Fluids 22 (12):126101. doi:10.1063/1.3520188.
  • Liang, W., R. M´evel, and C. K. Law. 2018. Role of low-temperature chemistry in detonation of n-heptane/oxygen/diluent mixtures. Combust. Flame 193:463–70. doi:10.1016/j.combustflame.2018.03.035.
  • Liberman, M., C. Wang, C. Qian, and J. Liu. 2019. Influence of chemical kinetics on spontaneous waves and detonation initiation in highly reactive and low reactive mixtures. Combust. Theory Modelling 23 (3):467–95. doi:10.1080/13647830.2018.1551578.
  • Luong, M. B., S. Desai, F. E. Hern´andezp´erez, R. Sankaran, B. Johansson, and H. G. Im. 2021. Effects of turbulence and temperature fluctuations on knock development in an ethanol/air mixture. Flow Turbul. Combust. 106 (2):575–95. doi:10.1007/s10494-020-00171-9.
  • Luong, M. B., S. Desai, F. E. H. P´erez, R. Sankaran, B. Johansson, and H. G. Im. 2021. A statistical analysis of developing knock intensity in a mixture with temperature inhomogeneities. Proc. Combust. Inst. 38 (4):5781–89. doi:10.1016/j.proci.2020.05.044.
  • M´evel, R., and S. Gallier. 2018. Structure of detonation propagating in lean and rich dimethyl ether–oxygen mixtures. Shock Waves 28 (5):955–66. doi:10.1007/s00193-018-0837-x.
  • Morev, I., B. Tekgu¨l, M. Gadalla, A. Shahanaghi, J. Kannan, S. Karimkashi, O. Kaario, and V. Vuorinen. 2022. Fast reactive flow simulations using analytical jacobian and dynamic load balancing in openfoam. Phys. Fluids 34 (2):021801. doi:10.1063/5.0077437.
  • Ng, H. D., J. Chao, T. Yatsufusa, and J. H. Lee. 2009. Measurement and chemical kinetic prediction of detonation sensitivity and cellular structure characteristics in dimethyl ether–oxygen mixtures. Fuel 88 (1):124–31. doi:10.1016/j.fuel.2008.07.029.
  • Niemeyer, K. E., N. J. Curtis, and C. -J. Sung. 2017. Pyjac: Analytical jacobian generator for chemical kinetics. Comput. Phys. Commun. 215:188–203. doi:10.1016/j.cpc.2017.02.004.
  • Pan, J., S. Dong, H. Wei, T. Li, G. Shu, and L. Zhou. 2019. Temperature gradient induced detonation development inside and outside a hotspot for different fuels. Combust. Flame 205:269–77. doi:10.1016/j.combustflame.2019.04.003.
  • Pan, J., Z. Hu, Z. Pan, G. Shu, H. Wei, T. Li, and C. Liu. 2021. Auto-Ignition and knocking characteristics of gasoline/ethanol blends in confined space with turbulence. Fuel 294:120559. doi:10.1016/j.fuel.2021.120559.
  • Pan, J., L. Wang, Y. He, H. Wei, G. Shu, and T. Li. 2021. Hotspot auto-ignition induced detonation development: Emphasis on energy density and chemical reactivity. Combust. Theory Modelling 26:1–22.
  • Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. 2011. Scikit-Learn: Machine learning in Python. J. Mach. Learn. Res. 12:2825–30.
  • Poling, B. E., J. M. Prausnitz, and J. P. O’Connell. 2001. Properties of gases and liquids. 5th ed. New York: McGraw-Hill Education.
  • Ranzi, E., A. Frassoldati, A. Stagni, M. Pelucchi, A. Cuoci, and T. Faravelli. 2014. Reduced kinetic schemes of complex reaction systems: Fossil and biomass-derived transportation fuels. Int. J. Chem. Kinet. 46 (9):512–42. doi:10.1002/kin.20867.
  • Robert, A., J.-M. Zaccardi, C. Dul, A. Guerouani, and J. Rudloff. 2019. Numerical study of auto-ignition propagation modes in toluene reference fuel–air mixtures: Toward a better understanding of abnormal combustion in spark-ignition engines. Int. J. Engine Res. 20 (7):734–45. doi:10.1177/1468087418777664.
  • Rudloff, J., J.-M. Zaccardi, S. Richard, and J. Anderlohr. 2013. Analysis of pre- ignition in highly charged si engines: Emphasis on the auto-ignition mode. Proc. Combust. Inst. 34 (2):2959–67. doi:10.1016/j.proci.2012.05.005.
  • Sankaran, R., H. G. Im, E. R. Hawkes, and J. H. Chen. 2005. The effects of non- uniform temperature distribution on the ignition of a lean homogeneous hydrogen– air mixture. Proc. Combust. Inst. 30 (1):875–82. doi:10.1016/j.proci.2004.08.176.
  • Sarathy, S. M., A. Farooq, and G. T. Kalghatgi. 2018. Recent progress in gasoline surrogate fuels. Prog. Energy Combust. Sci. 65:67–108. doi:10.1016/j.pecs.2017.09.004.
  • Shahanaghi, A., S. Karimkashi, O. Kaario, V. Vuorinen, R. Tripathi, and T. Sarjovaara. 2022. A diagnostic approach to assess the effect of temperature stratification on the combustion modes of gasoline surrogates. Combust. Sci. Technol. 1–32. doi:10.1080/00102202.2022.2057798.
  • Smith, G. P. 1999. Gri-Mech 3.0. http://www.me.berkley.edu/grimech/.
  • Sod, G. A. 1978. A survey of several finite difference methods for systems of non- linear hyperbolic conservation laws. J. Comput. Phys. 27 (1):1–31. doi:10.1016/0021-9991(78)90023-2.
  • Stagni, A., A. Frassoldati, A. Cuoci, T. Faravelli, and E. Ranzi. 2016. Skeletal mechanism reduction through species-targeted sensitivity analysis. Combust. Flame 163:382–93. doi:10.1016/j.combustflame.2015.10.013.
  • Sturtzer, M.-O., N. Lamoureux, C. Matignon, D. Desbordes, and H.-N. Presles. 2005. On the origin of the double cellular structure of the detonation in gaseous nitromethane and its mixtures with oxygen. Shock Waves 14 (1–2):45–51. doi:10.1007/s00193-004-0236-3.
  • Su, J., P. Dai, and Z. Chen. 2021. Detonation development from a hot spot in methane/air mixtures: Effects of kinetic models. Int. J. Engine Res. 22 (8):2597–606. doi:10.1177/1468087420944617.
  • Terashima, H., and M. Koshi. 2015. Mechanisms of strong pressure wave generation in end-gas autoignition during knocking combustion. Combust. Flame 162 (5):1944–56. doi:10.1016/j.combustflame.2014.12.013.
  • Terashima, H., A. Matsugi, and M. Koshi. 2017. Origin and reactivity of hot-spots in end-gas autoignition with effects of negative temperature coefficients: Relevance to pressure wave developments. Combust. Flame 184:324–34. doi:10.1016/j.combustflame.2017.06.016.
  • Wang, Z., H. Liu, T. Song, Y. Qi, X. He, S. Shuai, and J. Wang. 2015. Relationship between super-knock and pre-ignition. Int. J. Engine Res. 16 (2):166–80. doi:10.1177/1468087414530388.
  • Wang, Z., Y. Qi, X. He, J. Wang, S. Shuai, and C. K. Law. 2015. Analysis of pre- ignition to super-knock: Hotspot-induced deflagration to detonation. Fuel 144:222–27. doi:10.1016/j.fuel.2014.12.061.
  • Wei, H., Y. Wang, L. Zhou, L. Zhong, J. Yu, and X. Zhang. 2021. End-Gas autoignition mechanism in a downsized spark-ignition engine: Effect of inhomogeneity. Combust. Sci. Technol. 194:1–28.
  • Weller, H. G., G. Tabor, H. Jasak, and C. Fureby. 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6):620–31. doi:10.1063/1.168744.
  • Yu, H., and Z. Chen. 2015. End-Gas autoignition and detonation development in a closed chamber. Combust. Flame 162 (11):4102–11. doi:10.1016/j.combustflame.2015.08.018.
  • Yu, Z., H. Zhang, and P. Dai. 2021. Autoignition and detonation development induced by temperature gradient in n-c7h16/air/h2o mixtures. Phys. Fluids 33 (1):017111. doi:10.1063/5.0038125.
  • Zeldovich, Y. B. 1980. Regime classification of an exothermic reaction with nonuniform initial conditions. Combust. Flame 39 (2):211–14. doi:10.1016/0010-2180(80)90017-6.
  • Zhang, F. 2012. Shock waves science and technology library, Vol. 6: Detonation dynamics, Vol. 6. Heidelberg, Germany: Springer Science & Business Media.
  • Zhao, M., Z. Ren, and H. Zhang. 2021. Pulsating detonative combustion in n- heptane/air mixtures under off-stoichiometric conditions. Combust. Flame 226:285–301. doi:10.1016/j.combustflame.2020.12.012.