111
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Enhancement of Biogas Laminar Burning Velocity Using Nitrous Oxide and Hydrogen Enrichment

ORCID Icon, &
Received 10 Aug 2022, Accepted 04 Oct 2022, Published online: 07 Oct 2022

References

  • Aklouche, F. Z., K. Loubar, A. Bentebbiche, S. Awad, and M. Tazerout. 2017. Experimental Investigation of the equivalence ratio influence on combustion, performance and exhaust emissions of a dual fuel diesel engine operating on synthetic biogas fuel. Energy Convers. Manage. 152 (November):291–99. doi:10.1016/J.ENCONMAN.2017.09.050.
  • Askari, O., A. Moghaddas, A. Alholm, K. Vien, B. Alhazmi, and H. Metghalchi. 2016. Laminar burning speed measurement and flame instability study of h2/co/air mixtures at high temperatures and pressures using a novel multi-shell model. Combust. Flame 168 (June):20–31. doi:10.1016/j.combustflame.2016.03.018.
  • Basha, S. A., K. Raja Gopal, and S. Jebaraj. 2009. A review on biodiesel production, combustion, emissions and performance. Renew. Sust. Energ. Rev. 13 (6–7):1628–34. doi:10.1016/J.RSER.2008.09.031.
  • Benaissa, S., S. M. A. Belkacem Adouane, and A. Mohammad. 2021. Effect of hydrogen addition on the combustion characteristics of premixed biogas/hydrogen-air mixtures. Int. J. Hydrogen Energy 46 (35):18661–77. doi:10.1016/J.IJHYDENE.2021.02.225.
  • Bock, E., and M. Wagner. 2006. The Prokaryotes (457–495). Springer.
  • Bouvet, N., F. Halter, C. Chauveau, and Y. Yoon. 2013. On the effective lewis number formulations for lean hydrogen/hydrocarbon/air mixtures. Int. J. Hydrogen Energy 38 (14):5949–60. doi:10.1016/j.ijhydene.2013.02.098.
  • Chen, Z., M. P. Burke, and Y. Ju. 2009. Effects of compression and stretch on the determination of laminar flame speeds using propagating spherical flames. Combust. Theory Modelling 13 (2):343–64. doi:10.1080/13647830802632192.
  • Elhawary, S., A. Saat, M. Abdul Wahid, and A. Dairobi Ghazali. 2020. Experimental study of using biogas in pulse detonation engine with hydrogen enrichment. Int. J. Hydrogen Energy 45 (30):15414–24. doi:10.1016/j.ijhydene.2020.03.246.
  • Elhawary, S., A. Saat, M. Abdul Wahid, and M. Zarhamdy Md Zain. 2022 June. Effect of nitrous oxide on laminar burning velocity, hydrodynamic, and diffusive–thermal instability of biogas combustion. J. Therm. Anal. Calorim 1–16. doi:10.1007/S10973-022-11408-2.
  • Goswami, M., S. C. R. Derks, K. Coumans, W. J. Slikker, M. H. de Andrade Oliveira, R. J. M. Bastiaans, C. C. M. Luijten, L. P. H. de Goey, and A. A. Konnov. 2013. The effect of elevated pressures on the laminar burning velocity of Methane+air mixtures. Combust. Flame 160 (9):1627–35. doi:10.1016/j.combustflame.2013.03.032.
  • Habeebullah, M. B., F. N. Alasfour, and M. C. Branch. 1991. Structure and kinetics of CH4/N2O flames. Symp. Int. Comb 23 (1):371–78. doi:10.1016/S0082-0784(06)80281-X.
  • Hawary, S. E., O. S. M. Abu-Elyazeed, A. Alyan Fahmy, and K. Meglaa. 2016. Theoretical study of hydraulic jump during circular horizontal hot leg injection in pressurized water reactor. Ann. Nucl. Energy 94 (August):783–92. doi:10.1016/j.anucene.2016.04.040.
  • Hermanns, R. T. E., A. A. Konnov, R. J. M. Bastiaans, L. P. H. de Goey, K. Lucka, and H. Köhne. 2010. Effects of temperature and composition on the laminar burning velocity of CH4 + H2 + O2 + N2 flames. Fuel 89 (1):114–21. doi:10.1016/j.fuel.2009.08.010.
  • Iijima, T., and T. Takeno. 1986. Effects of temperature and pressure on burning velocity. Combust. Flame 65 (1):35–43. doi:10.1016/0010-2180(86)90070-2.
  • Konnov, A. A., A. Mohammad, V. Ratna Kishore, N. Il Kim, C. Prathap, and S. Kumar. 2018. A comprehensive review of measurements and data analysis of laminar burning velocities for various Fuel+air mixtures. In Progress in energy and combustion science, Elsevier Ltd. doi:10.1016/j.pecs.2018.05.003.
  • Kwon, S., L. K. Tseng, and G. M. Faeth. 1992. Laminar burning velocities and transition to unstable flames in H2/O2/N2 and C3H8/O2/N2 mixtures. Combust. Flame 90 (3–4):230–46. doi:10.1016/0010-2180(92)90085-4.
  • Lapalme, D., R. Lemaire, and P. Seers. 2017. Assessment of the method for calculating the Lewis number of H2/CO/CH4 mixtures and comparison with experimental results. Int. J. Hydrogen Energy 42 (12):8314–28. doi:10.1016/j.ijhydene.2017.01.099.
  • Li, H., G. Li, Z. Sun, Y. Yu, Y. Zhai, and Z. Zhou. 2014. Experimental investigation on laminar burning velocities and flame intrinsic instabilities of lean and stoichiometric H2/CO/Air mixtures at reduced, normal and elevated pressures. Fuel 135 (November):279–91. doi:10.1016/j.fuel.2014.06.074.
  • Lin, Z., D. Sun, Y. Dang, and D. E. Holmes. 2018. Significant enhancement of nitrous oxide energy yields from wastewater achieved by bioaugmentation with a recombinant strain of Pseudomonas Aeruginosa. Sci. Rep. 8 (1):1–9. doi:10.1038/s41598-018-30326-8.
  • Lohan, S. K., J. Dixit, R. Kumar, Y. Pandey, J. Khan, M. Ishaq, S. Modasir, and D. Kumar. 2015. Biogas: A boon for sustainable energy development in India׳s cold climate. Renew. Sust. Energ. Rev. 43 (March):95–101. doi:10.1016/J.RSER.2014.11.028.
  • Miao, J., C. W. Leung, and C. S. Cheung. 2014. Effect of hydrogen percentage and air jet Reynolds number on fuel lean flame stability of LPG-fired inverse diffusion flame with hydrogen enrichment. Int. J. Hydrogen Energy 39 (1):602–09. doi:10.1016/J.IJHYDENE.2013.10.062.
  • Newman-Lehman, T., R. Grana, K. Seshadri, and F. Williams. 2013. The structure and extinction of nonpremixed Methane/Nitrous oxide and Ethane/Nitrous oxide flames. Proc. Combust. Inst. 34 (2):2147–53. doi:10.1016/j.proci.2012.05.102.
  • Nonaka, H. O. B., and F. M. Pereira. 2016. Experimental and numerical study of CO2 content effects on the laminar burning velocity of biogas. Fuel 182 (October):382–90. doi:10.1016/j.fuel.2016.05.098.
  • Park, S. H., S. Hyun Yoon, J. Cha, and C. Sik Lee. 2014. Mixing Effects of biogas and dimethyl ether (DME) on combustion and emission characteristics of DME fueled high-speed diesel engine. Energy 66 (March):413–22. doi:10.1016/J.ENERGY.2014.02.007.
  • Park, C., S. Park, Y. Lee, C. Kim, S. Lee, and Y. Moriyoshi. 2011. Performance and emission characteristics of a si engine fueled by low calorific biogas blended with hydrogen. Int. J. Hydrogen Energy 36 (16):10080–88. doi:10.1016/j.ijhydene.2011.05.018.
  • Pfahl, U. J., M. C. Ross, J. E. Shepherd, K. O. Pasamehmetoglu, and C. Unal. 2000. Flammability limits, ignition energy, and flame speeds in H2-CH4-NH3- N2O-O2-N2 mixtures. Combust. Flame 123 (1–2):140–58. doi:10.1016/S0010-2180(00)00152-8.
  • Powell, O. A., P. Papas, and C. Dreyer. 2009. Laminar burning velocities for hydrogen-, Methane-, Acetylene-, and Propane-nitrous oxide flames. Combust. Sci. Technol 181 (7):917–36. doi:10.1080/00102200902817066.
  • Powell, O. A., P. Papas, and C. B. Dreyer. 2010. Hydrogen- and C1-C3 hydrocarbon-nitrous oxide kinetics in freely propagating and burner-stabilized flames, shock tubes, and flow reactors. Combust. Sci. Technol 182 (3):252–83. doi:10.1080/00102200903357724.
  • Razus, D., M. Mitu, V. Giurcan, C. Movileanu, and D. Oancea. 2018. Methane-unconventional oxidant flames. laminar burning velocities of nitrogen-diluted methane–N2O mixtures. Process Saf. Environ. Prot 114 (February):240–50. doi:10.1016/J.PSEP.2017.12.026.
  • Rokni, E., A. Moghaddas, A. Omid, and H. Metghalchi. 2015. Measurement of laminar burning speeds and investigation of flame stability of acetylene (C2H2)/Air mixtures. J. Energy Resour. Technol. Trans. ASME 137 (1):1. doi:10.1115/1.4028363.
  • Sharma, S. P., D. D. Agrawal, and C. P. Gupta. 1981. The pressure and temperature dependence of burning velocity in a spherical combustion bomb. Symp. Int. Comb 18 (1):493–501. doi:10.1016/S0082-0784(81)80055-0.
  • Shebeko, A., Y. Yu, N. Shebeko, A. V. Zuban, and V. Yu Navzenya. 2013. An experimental investigation of an inertization effectiveness of fluorinated hydrocarbons in relation to premixed H2–N2O and CH4–N2O flames. J. Loss. Prev. Process. Ind 26 (6):1639–45. doi:10.1016/J.JLP.2013.07.010.
  • Smith, G. P., D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, C. T. B. Mikhail Goldenberg, R. K. Hanson, S. Song, V. V. L. William C Gardiner Jr., and Z. Qin. 1999. “GRI-Mech 3.0.” http://combustion.berkeley.edu/gri-mech/version30/text30.html.
  • Tang, C., Z. Huang, C. Jin, J. He, J. Wang, X. Wang, and H. Miao. 2008. Laminar burning velocities and combustion characteristics of propane-hydrogen-air premixed flames. Int. J. Hydrogen Energy 33 (18):4906–14. doi:10.1016/j.ijhydene.2008.06.063.
  • Todt, D., and P. Dörsch. 2016. Mechanism leading to N2O production in wastewater treating biofilm systems. In Reviews in environmental science and biotechnology, Springer Netherlands. doi:10.1007/s11157-016-9401-2.
  • Tseng, C. J. 2002. Effects of hydrogen addition on methane combustion in a porous medium burner. Int. J. Hydrogen Energy 27 (6):699–707. doi:10.1016/S0360-3199(01)00173-2.
  • Vanderhoff, J. A., R. A. Beyer, and A. J. Kotlar. 1982. “Laser Raman spectroscopy of flames; temperature and concentrations in Ch 4/N20. Maryland.”: Flames Us Army Armament Research and Development Command Ballistic Research Laboratory Aberdeen Proving Ground.
  • Vandooren, J., M. C. Branch, and P. J. Van Tiggelen. 1992. Comparisons of the structure of stoichiometric CH4N2OAr and CH4O2Ar flames by molecular beam sampling and mass spectrometric analysis. Combust. Flame 90 (3–4):247–58. doi:10.1016/0010-2180(92)90086-5.
  • Venu, H., L. Subramani, and V. Dhana Raju. 2019. Emission reduction in a di diesel engine using exhaust gas recirculation (EGR) of palm biodiesel blended with TiO2 nano additives. Renew. Energ 140 (September):245–63. doi:10.1016/J.RENENE.2019.03.078.
  • Wei, Z. L., C. W. Leung, C. S. Cheung, and Z. H. Huang. 2016. Effects of equivalence ratio, H2 and CO2 addition on the heat release characteristics of premixed laminar biogas-hydrogen flame. Int. J. Hydrogen Energy 41 (15):6567–80. doi:10.1016/J.IJHYDENE.2016.01.170.
  • Wei, Z., H. Zhen, J. Fu, C. Leung, C. Cheung, and Z. Huang. 2019. Experimental and numerical study on the laminar burning velocity of hydrogen enriched biogas mixture. Int. J. Hydrogen Energy 44 (39):22240–49. doi:10.1016/J.IJHYDENE.2019.06.097.
  • Xin, Z., X. Jian, Z. Shizhuo, H. Xiaosen, and L. Jianhua. 2013. The experimental study on cyclic variation in a spark ignited engine fueled with biogas and hydrogen blends. Int. J. Hydrogen Energy 38 (25):11164–68. doi:10.1016/J.IJHYDENE.2013.01.097.
  • Yadav, V. K., A. Ray, and M. R. Ravi. 2019. Experimental and computational investigation of the laminar burning velocity of hydrogen-enriched biogas. Fuel 235 (January):810–21. doi:10.1016/J.FUEL.2018.08.068.
  • Yamasaki, Y., M. Kanno, Y. Suzuki, and S. Kaneko. 2013. Development of an engine control system using city gas and biogas fuel mixture. Appl. Energy 101 (January):465–74. doi:10.1016/J.APENERGY.2012.06.013.
  • Zabarnick, S. 1991. Laser-induced fluorescence diagnostics and chemical kinetic modeling of a CH4/NO2/O2 flame at 55 torr. Combust. Flame 85 (1–2):27–50. doi:10.1016/0010-2180(91)90175-B.
  • Zhen, H. S., C. W. Leung, and C. S. Cheung. 2013. Effects of hydrogen addition on the characteristics of a biogas diffusion flame. Int. J. Hydrogen Energy 38 (16):6874–81. doi:10.1016/J.IJHYDENE.2013.02.046.
  • Zhen, H. S., C. W. Leung, C. S. Cheung, and Z. H. Huang. 2014. Characterization of biogas-hydrogen premixed flames using bunsen burner. Int. J. Hydrogen Energy 39 (25):13292–99. doi:10.1016/J.IJHYDENE.2014.06.126.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.