110
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Most Reactive Mixture Analysis of Ozone- and Temperature-Enhanced n-Heptane Droplet Autoignition and Cool Flame Burning in Microgravity

&
Received 26 Jul 2022, Accepted 08 Oct 2022, Published online: 17 Oct 2022

References

  • Abtahizadeh, E., J. van Oijen, and P. De Goey. 2012. Numerical study of Mild combustion with entrainment of burned gas into oxidizer and/or fuel streams. Combust. Flame 159:2155–65. doi:10.1016/j.combustflame.2012.02.004.
  • Alam, F. E., A. C. Aghdam, F. L. Dryer, and T. I. Farouk. 2019. Oscillatory cool flame combustion behavior of submillimeter sized n-alkane droplet under near limit conditions. Proc. Combust Inst 37:3383–91. doi:10.1016/j.proci.2018.05.151.
  • Alam, F. E., S. H. Won, F. L. Dryer, and T. I. Farouk. 2018. Ozone assisted cool flame combustion of sub-millimeter sized n-alkane droplets at atmospheric and higher pressure. Combust. Flame 195:220–31. doi:10.1016/j.combustflame.2018.01.015.
  • Borghesi, G., and E. Mastorakos. 2015. Spontaneous ignition of isolated n-heptane droplets at low, intermediate, and high ambient temperatures from a mixture-fraction perspective. Combust. Flame 162:2544–60. doi:10.1016/j.combustflame.2015.03.003.
  • Borghesi, G., and E. Mastorakos. 2016. Autoignition of n-decane droplets in the low-, Intermediate-, and high-temperature regimes from a mixture fraction viewpoint. Flow, Turbul. Combust 96:1107–21. doi:10.1007/s10494-016-9710-0.
  • Borghesi, G., E. Mastorakos, C. B. Devaud, and R. W. Bilger. 2011. Modeling evaporation effects in conditional moment closure for spray autoignition. Combust. Theory Model 15:725–52. doi:10.1080/13647830.2011.560282.
  • Brown, M. Q., and E. L. Belmont. 2021. Effects of ozone on n- heptane low temperature chemistry and premixed cool flames. Combust. Flame 225:20–30. doi:10.1016/j.combustflame.2020.10.029.
  • Buzzi-Ferraris, G., and F. Manenti. 2010. Fundamentals and linear algebra for the chemical engineer: Solving numerical problems. Hoboken, NJ: Wiley VCH.
  • Buzzi-Ferraris, G., and F. Manenti. 2013. Nonlinear systems and optimization for the chemical engineer: Solving numerical problems. Hoboken, NJ: Wiley VCH.
  • Cheng, P. 1964. Two-dimensional radiation gas flow by a moment method. Aiaa J. 2:1662–64.
  • Cheng, Y., Y. Xu, M. C. Hicks, and C. T. Avedisian. 2016. Comprehensive study of initial diameter effects and other observations on convection-free droplet combustion in the standard atmosphere for n -heptane, n -octane, and n -decane R. Combust. Flame 171:27–41. doi:10.1016/j.combustflame.2016.05.013.
  • Cuoci, A., A. Frassoldati, T. Faravelli, and E. Ranzi. 2013. Numerical modeling of laminar flames with detailed kinetics based on the operator-splitting method. Energy and Fuels 27:7730–53. doi:10.1021/ef4016334.
  • Cuoci, A., A. Frassoldati, T. Faravelli, and E. Ranzi. 2015a. Numerical modeling of auto-ignition of isolated fuel droplets in microgravity. Proc. Combust Inst 35:1621–27. doi:10.1016/j.proci.2014.06.035.
  • Cuoci, A., A. Frassoldati, T. Faravelli, and E. Ranzi. 2015b. OpenSMOKE++: An object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms. Comput. Phys. Commun. 192:237–64. doi:10.1016/j.cpc.2015.02.014.
  • Cuoci, A., M. Mehl, G. Buzzi-Ferraris, T. Faravelli, D. Manca, and E. Ranzi. 2005. Autoignition and burning rates of fuel droplets under microgravity. Combust. Flame 143:211–26. doi:10.1016/j.combustflame.2005.06.003.
  • Cuoci, A., A. E. Saufi, A. Frassoldati, D. L. Dietrich, F. A. Williams, and T. Faravelli. 2017. Flame extinction and low-temperature combustion of isolated fuel droplets of n-alkanes. Proc. Combust Inst 36:2531–39. doi:10.1016/j.proci.2016.08.019.
  • Daubert, T. E., and R. P. Danner. 1985. Data Compilation Tables of Properties of Pure Compounds. New York, NY: Des. Inst. Phys. Prop. Data, Am. Inst. Chem. Eng.
  • Dietrich, D. 2013. Detailed results from the flame extinguishment experiment (FLEX). Cleveland, OH, USA: NASA, Glenn Research Center. Tech. Publ. NASA/TP-2013-216046.
  • Dietrich, D. L., R. Calabria, P. Massoli, V. Nayagam, and F. A. Williams. 2017. Experimental observations of the low-temperature burning of decane/hexanol droplets in microgravity. Combust. Sci. Technol 189:520–54. doi:10.1080/00102202.2016.1225730.
  • Dubreuil, A., F. Foucher, C. Mounaïm-Rousselle, G. Dayma, and P. Dagaut. 2007. HCCI combustion: Effect of NO in EGR. Proc. Combust Inst 31 (II):2879–86. doi:10.1016/j.proci.2006.07.168.
  • Farouk, T. I., D. Dietrich, F. E. Alam, and F. L. Dryer. 2017. Isolated n-decane droplet combustion - Dual stage and single stage transition to “Cool Flame” droplet burning. Proc. Combust Inst 36:2523–30. doi:10.1016/j.proci.2016.07.015.
  • Farouk, T., and F. Dryer. 2014. Isolated n-heptane droplet combustion in microgravity: “Cool Flames” - Two-stage combustion. Combust. Flame 161:565–81. doi:10.1016/j.combustflame.2013.09.011.
  • Farouk, T. I., M. C. Hicks, and F. L. Dryer. 2015. Multistage oscillatory “Cool Flame” behavior for isolated alkane droplet combustion in elevated pressure microgravity condition. Proc. Combust Inst 35:1701–08. doi:10.1016/j.proci.2014.06.015.
  • Foucher, F., P. Higelin, C. Mounam-Rousselle, and P. Dagaut. 2013. Influence of ozone on the combustion of n-heptane in a HCCI engine. Proc. Combust Inst 34:3005–12. doi:10.1016/j.proci.2012.05.042.
  • Gao, X., J. Zhai, W. Sun, T. Ombrello, and C. Carter. 2016. The effect of ozone addition on autoignition and flame stabilization. 54th AIAA Aerosp. Sci. Meet 0:1–8. doi:10.2514/6.2016-0960.
  • Goodwin, D. G., R. L. Speth, H. K. Moffat, and B. W. Weber. 2018. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. doi:10.5281/zenodo.1174508.
  • Hajilou, M., and E. Belmont. 2018. Characterization of ozone-enhanced propane cool flames at sub-atmospheric pressures. Combust. Flame 196:416–23. doi:10.1016/j.combustflame.2018.07.001.
  • Hajilou, M., M. Q. Brown, M. C. Brown, and E. Belmont. 2019. Investigation of the structure and propagation speeds of n-heptane cool flames. Combust. Flame 208:99–109. doi:10.1016/j.combustflame.2019.06.020.
  • Hajilou, M., T. Ombrello, S. H. Won, and E. Belmont. 2017. Experimental and numerical characterization of freely propagating ozone-activated dimethyl ether cool flames. Combustion and Flame 176:326–333. doi: 10.1016/j.combustflame.2016.11.005
  • Haworth, D. C. 2010. Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci 36:168–259. doi:10.1016/j.pecs.2009.09.003.
  • Ju, Y. 2020. Understanding cool flames and warm flames. Proc. Combust Inst 1–37. doi:10.1016/j.proci.2020.09.019.
  • Ju, Y., C. B. Reuter, O. R. Yehia, T. I. Farouk, and S. H. Won. 2019. Dynamics of cool flames. Prog. Energy Combust. Sci 75:100787. doi:10.1016/j.pecs.2019.100787.
  • Ju, Y., and W. Sun. 2015. Plasma assisted combustion: Dynamics and chemistry. Prog. Energy Combust. Sci 48:21–83. doi:10.1016/j.pecs.2014.12.002.
  • Law, C. K. 1975. ”Asymptotic theory for ignition and extinction in droplet burning.“ Combust. Flame 98:89–98.
  • Linan, A., and A. Crespo. 1976. An asymptotic analysis of unsteady diffusion flames for large activation energies. Combust. Sci. Technol 14:95–117. doi:10.1080/00102207608946750.
  • Mastorakos, E. 2009. Ignition of turbulent non-premixed flames. Prog. Energy Combust. Sci 35:57–97. doi:10.1016/j.pecs.2008.07.002.
  • Moriue, O., C. Eigenbrod, H. J. Rath, J. Sato, K. Okai, M. Tsue, and M. Kono. 2000. Effects of dilution by aromatic hydrocarbons on staged ignition behavior of n-decane droplets. Proc. Combust Inst 28:969–75. doi:10.1016/S0082-0784(00)80303-3.
  • Moriue, O., M. Mikami, N. Kojima, and C. Eigenbrod. 2005. Numerical simulations of the ignition of n-heptane droplets in the transition diameter range from heterogeneous to homogeneous ignition. Proc. Combust Inst 30 (II):1973–80. doi:10.1016/j.proci.2004.08.248.
  • Mortensen, M., and R. W. Bilger. 2009. Derivation of the conditional moment closure equations for spray combustion. Combust. Flame 156:62–72. doi:10.1016/j.combustflame.2008.07.007.
  • Nayagam, V., D. L. Dietrich, P. V. Ferkul, M. C. Hicks, and F. A. Williams. 2012. Can cool flames support quasi-steady alkane droplet burning? Combust. Flame 159:3583–88. doi:10.1016/j.combustflame.2012.07.012.
  • NIST, 2022. NIST [WWW Document]. URL https://webbook.nist.gov/cgi/cbook.cgi?Contrib=
  • Ó Conaire, M., H. J. Curran, J. M. Simmie, W. J. Pitz, and C. K. Westbrook. 2004. A comprehensive modeling study of iso-octane oxidation. Int. J. Chem. Kinet 36:603–22. doi:10.1002/kin.20036.
  • Olguin, H., and E. Gutheil. 2014. Influence of evaporation on spray flamelet structures. Combust. Flame 161:987–96. doi:10.1016/j.combustflame.2013.10.010.
  • Ombrello, T., S. Hee, Y. Ju, and S. Williams. 2010. Flame propagation enhancement by plasma excitation of oxygen. part I : Effects of O 3. Combust. Flame 157:1906–15. doi:10.1016/j.combustflame.2010.02.005.
  • Ong, J. C., K. M. Pang, and J. H. Walther. 2021. Prediction method for ignition delay time of liquid spray combustion in constant volume chamber. Fuel 287:119539. doi:10.1016/j.fuel.2020.119539.
  • Ono, T., T. Segawa, N. Saito, E. Takahashi, and M. Nishioka. 2017. Effect of long-lived species generated by non-thermal plasmas on the auto-ignition delay of liquid Hydrocarbon fuel-air pre-mixtures. Combust. Sci. Technol 189:1624–38. doi:10.1080/00102202.2017.1318856.
  • Reuter, C. B., M. Lee, S. Hee, and Y. Ju. 2017. Study of the low-temperature reactivity of large n -alkanes through cool diffusion flame extinction. Combust. Flame 179:23–32. doi:10.1016/j.combustflame.2017.01.028.
  • Reuter, C. B., S. H. Won, and Y. Ju. 2016. Experimental study of the dynamics and structure of self-sustaining premixed cool flames using a counterflow burner. Combust. Flame 166:125–32. doi:10.1016/j.combustflame.2016.01.008.
  • Rose, E. N., V. Nayagam, D. L. Dietrich, M. C. Hicks, U. G. Hegde, R. E. Padilla, and F. A. Williams. 2020. Autoignition dynamics of N-dodecane droplets under normal gravity. Combust. Sci. Technol 00:1–20. doi:10.1080/00102202.2020.1840369.
  • Ross, H., and S. Gollahalli. 2002. Microgravity Combustion: Fire in Free Fall. Appl. Mech. Rev. 55 (6):B116–17. doi:10.1115/1.1508155.
  • Sayssouk, S., D. Nelson-Gruel, C. Caillol, P. Higelin, and Y. Chamaillard. 2016. Towards control of HCCI combustion by ozone addition: A mathematical approach to estimate combustion parameters. Ifac-PapersOnline 49:361–68. doi:10.1016/j.ifacol.2016.08.054.
  • Schnaubelt, S., O. Moriue, T. Coordes, C. Eigenbrod, and H. J. Rath. 2000. Detailed numerical simulations of the multistage self-ignition process of n-heptane isolated droplets and their verification by comparison with microgravity experiments. Proc. Combust Inst 28 (1):953–60. doi:10.1016/S0082-0784(00)80301-X.
  • Seignour, N., A. Khacef, and F. Foucher. 2022. Experimental understanding of ozone decomposition inside a low temperature combustion engine. Combust. Sci. Technol 194 (2):292–303. doi:10.1080/00102202.2019.1678949.
  • Sherazi, H., and Y. Li. 2011. Homogeneous charge compression ignition engine: A technical review. In Proceedings of 2011 17th International Conference on Automation and Computing (ICAC), 315–320.
  • Sun, W., X. Gao, B. Wu, and T. Ombrello. 2019. The effect of ozone addition on combustion: Kinetics and dynamics. Prog. Energy Combust. Sci 73:1–25. doi:10.1016/j.pecs.2019.02.002.
  • Tachibana, T., K. Hirata, H. Nishida, and H. Osada. 1991. Effect of ozone on combustion of compression ignition engines. Combust. Flame 85 (3–4):515–19. doi:10.1016/0010-2180(91)90154-4.
  • Tanabe, M., T. Bolik, C. Eigenbrod, H. J. Rath, J. Sato, and M. Kono. 1996. Spontaneous ignition of liquid droplets from a view of non-homogeneous mixture formation and transient chemical reactions. Symp. Combust 26 (1):1637–43. doi:10.1016/S0082-0784(96)80387-0.
  • Won, S. H., B. Jiang, P. Dievart, C. H. Sohn, and Y. Ju. 2015. Self-sustaining n-heptane cool diffusion flames activated by ozone. Proc. Combust Inst 35 (1):881–88. doi:10.1016/j.proci.2014.05.021.
  • Yang, S., R. Zhang, X. Zhou, and D. Liu. 2022. Study of cool flames of octane isomers in the counterflow burner. Combust. Sci. Technol 00:1–15. doi:10.1080/00102202.2022.2054273.
  • Zhao, P., W. Liang, S. Deng, and C. K. Law. 2016. Initiation and propagation of laminar premixed cool flames. Fuel 166:477–87. doi:10.1016/j.fuel.2015.11.025.
  • Zhou, Y., Y. Gan, C. Zhang, D. Shi, Z. Jiang, and Y. Luo. 2022. Numerical study for influence of ozone on the combustion of biodiesel surrogates in a homogeneous charge compression ignition engine. Fuel Process. Technol 225:107039. doi:10.1016/j.fuproc.2021.107039.
  • Zhou, T., T. Ye, M. Zhu, M. Zhao, and J. Chen. 2017. Effect of droplet diameter and global equivalence ratio on n-heptane spray auto-ignition. Fuel 187:137–45. doi:10.1016/j.fuel.2016.09.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.