136
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Influence of Pyrolysis Gas Composition and Reaction Kinetics on Leaf-Scale Fires

, ORCID Icon, & ORCID Icon
Received 08 Jun 2021, Accepted 08 Sep 2022, Published online: 18 Oct 2022

References

  • Amini, E., M. S. Safdari, J. T. DeYoung, D. R. Weise, and T. H. Fletcher. 2019. Characterization of pyrolysis products from slow pyrolysis of live and dead vegetation native to the southern United States. Fuel 235:1475–91. doi:10.1016/j.fuel.2018.08.112.
  • Antal, M. 1983. Effects of reactor severity on the gas-phase pyrolysis of cellulose-and kraft lignin-derived volatile matter. Ind. Engg Chem. Prod Res Develop. 22 (2):366–75.
  • Antal, M. 1985. A review of the vapor phase pyrolysis of biomass derived volatile matter. Fundam Thermochem. Biomass Convers. 511–37.
  • Boroson, M., J. Howard, J. Longwell, and W. Peters. 1989. Product yields and kinetics from the vapor phase cracking of wood pyrolysis tars. AIChE J. 35 (1):120–28. doi:10.1002/aic.690350113.
  • Borujerdi, P., and B. Shotorban. 2022. Pyrolysis and combustion characteristics of leaf-like fuel under convection and radiation heating. Combust Sci. Technol 194 (12) : 2558–2579.
  • Borujerdi, P. R., B. Shotorban, and S. Mahalingam. 2020. A computational study of burning of vertically oriented leaves with various fuel moisture contents by upward convective heating. Fuel 276:118030. doi:10.1016/j.fuel.2020.118030.
  • Bryden, K. M., and M. J. Hagge. 2003. Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle. Fuel 82 (13):1633–44. doi:10.1016/S0016-2361(03)00108-X.
  • Bryden, K. M., K. W. Ragland, and C. J. Rutland. 2002. Modeling thermally thick pyrolysis of wood. Biomass Bioenergy. 22 (1):41–53. doi:10.1016/S0961-9534(01)00060-5.
  • Burrows, N. 2001. Flame residence times and rates of weight loss of eucalypt forest fuel particles. Int J. Wildland Fire 10 (2):137–43. doi:10.1071/WF01005.
  • Datta, B. N. 2010. Numerical linear algebra and applications. 2nd ed, Vol. 116. Philadelphia, PA, USA: SIAMa.
  • Di Blasi, C. 2008. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci. 34 (1):47–90. doi:10.1016/j.pecs.2006.12.001.
  • Evans, R., and T. Milne. 1987. Molecular characterization of the pyrolysis of biomass. Energy Fuels. 1 (2):123–37. doi:10.1021/ef00002a001.
  • Gallacher, J. R. 2016. The influence of season, heating mode and slope angle on wildland fire behavior. PhD dissertation., Provo, UT: Brigham Young University.
  • Grishin, A. M. 1997. Mathematical modeling of forest fires and new methods of fighting them. Publishing house of the Tomsk state university.
  • Grosshandler, W. L. 1993. Radcal: A narrow band model for radiation. Gaithersburg, MD, USA: Calculations in a Combustion Environment, NIST Technical Note 1402.
  • Koufopanos, C., A. Lucchesi, and G. Maschio. 1989. Kinetic modelling of the pyrolysis of biomass and biomass components. Canad J. Chem Engg. 67 (1):75–84. doi:10.1002/cjce.5450670111.
  • Lautenberger, C. 2014. Gpyro–a generalized pyrolysis model for combustible solids. Berkeley, CA: Technical Reference Version 0.8, Reax Engineering Inc.
  • Lee, D., H. Yang, R. Yan, and D. Liang. 2007. Prediction of gaseous products from biomass pyrolysis through combined kinetic and thermodynamic simulations. Fuel 86 (3):410–17. doi:10.1016/j.fuel.2006.07.020.
  • Leroy, V., E. Leoni, and P. Santoni. 2008. Reduced mechanism for the combustion of evolved gases in forest fires. Combust. Flame 154 (3):410–33. doi:10.1016/j.combustflame.2008.04.014.
  • Matt, F. J., M. A. Dietenberger, and D. R. Weise. 2020. Summative and ultimate analysis of live leaves from southern us forest plants for use in fire modeling 34 (4): 4703–4720.
  • McAllister, S., and M. Finney. 2017. Autoignition of wood under combined convective and radiative heating. Proceed. Combust Inst. 36 (2):3073–80. doi:10.1016/j.proci.2016.06.110.
  • McGrattan, K., S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, and K. Overholt. 2013. Fire dynamics simulator technical reference guide volume 1: Mathematical model. Gaithersbug, MD, USA: Special Publication 1018-6, U.S. Department of Commerce, National Institute of Standards and Technology.
  • Mell, W., A. Maranghides, R. McDermott, and S. Manzello. 2009a. Numerical simulation and experiments of burning douglas fir trees. Combust. Flame 156 (10):2023–41. doi:10.1016/j.combustflame.2009.06.015.
  • Mell, W., A. Maranghides, R. McDermott, and S. L. Manzello. 2009b. Numerical simulation and experiments of burning douglas fir trees. Combust. Flame 156 (10):2023–41. doi:10.1016/j.combustflame.2009.06.015.
  • Miller, R., and J. Bellan. 1997. A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics. Combust Sci. Technol. 126 (1–6):97–137. doi:10.1080/00102209708935670.
  • Morvan, D., and J. Dupuy. 2001. Modeling of fire spread through a forest fuel bed using a multiphase formulation. Combust. Flame 127 (1–2):1981–94. doi:10.1016/S0010-2180(01)00302-9.
  • Morvan, D., M. Larini, J. Dupuy, P. Fernandes, A. Miranda, J. Andre, O. Séro-Guillaume, D. Calogine, and P. Cuiñas. 2004. Behaviour modelling of wildland fires: A state of the art. EUFIRELAB: Euro-Mediterranean wildland fire laboratory, a wall-less laboratory for wildland fire sciences and technologies in the Euro-Mediterranean region. Warszawa, Poland: Reports, EU FIRE LAB.
  • Ni, M., D. Leung, M. Leung, and K. Sumathy. 2006. An overview of hydrogen production from biomass. Fuel Process. Technol. 87 (5):461–72. doi:10.1016/j.fuproc.2005.11.003.
  • Peters, N., and R. Kee. 1987. The computation of stretched laminar methane-air diffusion flames using a reduced four-step mechanism. Combust. Flame 68 (1):17–29. doi:10.1016/0010-2180(87)90062-9.
  • Pickett, B. M., 2008. Effects of moisture on combustion of live wildland forest fuels. PhD dissertation., Provo, UT: Brigham Young University.
  • Pickett, B. M., C. Isackson, R. Wunder, T. H. Fletcher, B. W. Butler, and D. R. Weise. 2010. Experimental measurements during combustion of moist individual foliage samples. Int J. Wildland Fire 19 (2):153–62.
  • Prince, D. R., 2014. Measurement and modeling of fire behavior in leaves and sparse shrubs. PhD dissertation., Provo, UT: Brigham Young University.
  • Prince, D. R., and T. H. Fletcher. 2014. Differences in burning behavior of live and dead leaves, part 1: Measurements. Combust Sci. Technol. 186 (12):1844–57. doi:10.1080/00102202.2014.923412.
  • Ritchie, S., K. Steckler, A. Hamins, T. Cleary, J. Yang, and T. Kashiwagi. 1997. The effect of sample size on the heat release rate of charring materials. Fire Saf Sci. 5:177–88. doi:10.3801/IAFSS.FSS.5-177.
  • Safdari, M. S., 2018. Characterization of pyrolysis products from fast pyrolysis of live and dead vegetation. PhD dissertation., Provo, UT.
  • Safdari, M., E. Amini, D. Weise, and T. Fletcher. 2020. Comparison of pyrolysis of live wildland fuels heated by radiation vs. convection. Fuel 268:117342. doi:10.1016/j.fuel.2020.117342.
  • Safdari, M. S., M. Rahmati, E. Amini, J. E. Howarth, J. P. Berryhill, M. Dietenberger, D. R. Weise, and T. H. Fletcher. 2018. Characterization of pyrolysis products from fast pyrolysis of live and dead vegetation native to the southern United States. Fuel 229:151–66. doi:10.1016/j.fuel.2018.04.166.
  • Scott, D., J. Piskorz, and D. Radlein. 1985. Liquid products from the continuous flash pyrolysis of biomass. Indus Engg. Chem Process Des Develop. 24 (3):581–88. doi:10.1021/i200030a011.
  • Sheng, C., and J. Azevedo. 2002. Modeling biomass devolatilization using the chemical percolation devolatilization model for the main components. Proceed Combust Inst. 29 (1):407–14. doi:10.1016/S1540-7489(02)80054-2.
  • Shotorban, B., B. L. Yashwanth, S. Mahalingam, and D. J. Haring. 2018. An investigation of pyrolysis and ignition of moist leaf-like fuel subject to convective heating. Combust. Flame 190:25–35. doi:10.1016/j.combustflame.2017.11.008.
  • Smith, G., D. Golden, M. Frenklach, N. Moriarty, B. Eiteneer, M. Goldenberg, C. Bowman, R. Hanson, S. Song, W. Gardiner Jr, et al. 2000. Gri-mech. Gas Res. Inst. http://www.me.berkeley.edu/grimech
  • Tihay, V., P. A. Santoni, A. Simeoni, J. P. Garo, and J. P. Vantelon. 2009. Skeletal and global mechanisms for the combustion of gases released by crushed forest fuels. Combust. Flame 156 (8):1565–75. doi:10.1016/j.combustflame.2009.05.004.
  • Turns, S. 1996. Introduction to combustion, Vol. 287. New York, NY, USA: McGraw-Hill Companies.
  • Wagenaar, B., W. Prins, and W. van Swaaij. 1993. Flash pyrolysis kinetics of pine wood. Fuel Process. Technol. 36 (1–3):291–98. doi:10.1016/0378-3820(93)90039-7.
  • Wilken, G. C. 1967. Snow accumulation in a manzanita brush field in the sierra nevada. Water Resour. Res. 3 (2):409–22. doi:10.1029/WR003i002p00409.
  • Wurzenberger, J., S. Wallner, H. Raupenstrauch, and J. Khinast. 2002. Thermal conversion of biomass: Comprehensive reactor and particle modeling. AIChE J. 48 (10):2398–411. doi:10.1002/aic.690481029.
  • Yashwanth, B., B. Shotorban, S. Mahalingam, C. Lautenberger, and D. Weise. 2016. A numerical investigation of the influence of radiation and moisture content on pyrolysis and ignition of a leaf-like fuel element. Combust. Flame 163:301–16. doi:10.1016/j.combustflame.2015.10.006.
  • Zhou, X., and S. Mahalingam. 2001. Evaluation of reduced mechanism for modeling combustion of pyrolysis gas in wildland fire. Combust Sci. Technol. 171 (1):39–70. doi:10.1080/00102200108907858.
  • Zhou, X., and J. Pereira. 1998. Comparison of four combustion models for simulating the premixed combustion in inert porous media. Fire Mater. 22 (5):187–97. doi:10.1002/(SICI)1099-1018(199809/10)22:5<187:AID-FAM652>3.0.CO;2-T.
  • Zhou, X., D. Weise, and S. Mahalingam. 2005. Experimental measurements and numerical modeling of marginal burning in live chaparral fuel beds. Proceed Combust. Inst. 30 (2):2287–94. doi:10.1016/j.proci.2004.08.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.