133
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The Influence of Stove Materials on the Combustion Performance of a Hybrid Draft Biomass Cookstove

, ORCID Icon, &
Received 13 Apr 2022, Accepted 18 Oct 2022, Published online: 21 Oct 2022

References

  • Arora, P., S. Jain, and K. Sachdeva. 2014. Laboratory based assessment of cookstove performance using energy and emission parameters for North Indian cooking cycle. Biomass Bioenergy 69:211–21. doi:10.1016/j.biombioe.2014.07.012.
  • Auerkari, P. 1996. Mechanical and physical properties of engineering alumina ceramics. VTT Tiedotteita - Valtion Teknillinen Tutkimuskeskus, (1792).
  • Ayub, I., A. Munir, W. Amjad, A. Ghafoor, and M. S. Nasir. 2018. Energy- and exergy-based thermal analyses of a solar bakery unit. J. Therm. Anal. Calorim. 133 (2):1001–13. doi:10.1007/s10973-018-7165-3.
  • Baldwin, S. F. 1988. Biomass stoves: Engineering design, development and dissemination. Volunteers in Technical Assistance. doi: 10.1016/0048-7333(88)90026-1.
  • Bhattacharyya, S. C. 2015. Influence of India’s transformation on residential energy demand. Appl. Energy 143:228–37. doi:10.1016/j.apenergy.2015.01.048.
  • Blackwei, B. F., W. Gi, and K. J. Dowding (2000) ‘Determination of thermal conductivity of 304 stainless steel using parameter estimation techniques’, Proceedings of NHTC, 34th National Heat Transfer Conference, August 20-22, 2000, Pittsburgh, Pennsylvania.
  • Boafo-Mensah, G., K. M. Darkwa, and G. Laryea. 2020. Effect of combustion chamber material on the performance of an improved biomass cookstove. Case Stud. Therm. Eng. Elsevier Ltd. 21 (April):100688. doi:10.1016/j.csite.2020.100688.
  • Bond, T. C., S. J. Doherty, D. W. F, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. ‘Bounding the role of black carbon in the climate system a scientifc assessment.Pdf. J. Geophys. Res. Atmos. 118 (11):5380–552. doi:10.1002/jgrd.50171.
  • Caubel, J. J., V. H. Rapp, S. S. Chen, and A. J. Gadgil. 2018. Optimization of secondary air injection in a wood-burning cookstove: An experimental study. Environ. Sci. Technol. 52 (7):4449–56. doi:10.1021/acs.est.7b05277.
  • Clean Cooking Alliance. 2018. Voluntary Performance Targets, United Nations Foundation. https://www.cleancookingalliance.org/technology-and-fuels/standards/iwa-tiers-of-performance.html:
  • Colorado State University. 2014. Cookstove durability protocol, The global alliance for clean cookstoves.
  • Council, W. E. 2016. World energy resources.
  • Deng, L., D. Torres-Rojas, M. Burford, T. H. Whitlow, J. Lehmann, and E. M. Fisher. 2018. Fuel sensitivity of biomass cookstove performance. Appl. Energy 215 (January):13–20. doi:10.1016/j.apenergy.2018.01.091.
  • EPA, PCIA. (2014) The Water Boiling Test, version 4.2.3. http://www.cleancookstoves.org/our-work/standards-and-testing/learn-about-testing-protocols/.
  • Frank, P., and D. P. D. Incropera. nodate. Fundamentals of heat and mass transfer.
  • Gandigude, A., and M. Nagarhalli. 2018. Review of rocket cook-stove geometrical aspects for its performance improvement. Mater. Today Proc. Elsevier Ltd. 5 (2):4743–47. doi:10.1016/j.matpr.2017.12.047.
  • Global Allianace For Clean Cookstove. 2017. Handbook for biomass cookstove research, design, and development : A practical guide to implementing recent advances. http://cleancookstoves.org/binary-data/RESOURCE/file/000/000/517-1.pdf.
  • Huang, Y., N. Unger, T. Storelvmo, K. Harper, Y. Zheng, and C. Heyes. 2018. Global radiative effects of solid fuel cookstove aerosol emissions. Atmospheric Chem. Phys 18 (8):5219–33. doi:10.5194/acp-18-5219-2018.
  • IEA. 2019. World energy outlook 2019. World Energy Outlook Sereies. https://www.iea.org/reports/world-energy-outlook-2019%0Ahttps://www.iea.org/reports/world-energy-outlook-2019%0Ahttps://webstore.iea.org/download/summary/2467?fileName=Japanese-Summary-WEO2019.pdf.
  • IEA. 2021. India energy outlook 2021. India Energy Outlook 2021. doi: 10.1787/ec2fd78d-en.
  • Islam, M. M., R. Wathore, H. Zerriffi, J. D. Marshall, R. Bailis, and A. P. Grieshop. 2021. In-use emissions from biomass and LPG stoves measured during a large, multi-year cookstove intervention study in rural India. Sci. Total Environ. 758:143698. doi:10.1016/j.scitotenv.2020.143698.
  • ISO. 2012. IWA 11:2012 Guidelines for evaluating cookstove performance. Available at: https://www.iso.org/standard/61975.html.
  • Khandelwal, M., M. E. Hill, P. Greenough, J. Anthony, M. Quill, M. Linderman, and H. S. Udaykumar. 2017. Why have improved cook-stove initiatives in India failed? World Dev. 92:13–27. doi:10.1016/j.worlddev.2016.11.006.
  • Kshirsagar, M. P., and V. R. Kalamkar. 2014. A comprehensive review on biomass cookstoves and a systematic approach for modern cookstove design. Renew. Sustain. Energy Rev. 30:580–603. Elsevier. doi:10.1016/j.rser.2013.10.039.
  • Kshirsagar, M. P., and V. R. Kalamkar. 2015. A mathematical tool for predicting thermal performance of natural draft biomass cookstoves and identification of a new operational parameter. Energy 93:188–201. Elsevier Ltd. doi:10.1016/j.energy.2015.09.015.
  • Kshirsagar, M. P., and V. R. Kalamkar. 2016. User-centric approach for the design and sizing of natural convection biomass cookstoves for lower emissions. Energy 115:1202–15. Elsevier Ltd. doi:10.1016/j.energy.2016.09.048.
  • Kshirsagar, M. P., and V. R. Kalamkar. 2020. Application of multi-response robust parameter design for performance optimization of a hybrid draft biomass cook stove. Renew. Energy 153:1127–39. Elsevier Ltd. doi:10.1016/j.renene.2020.02.049.
  • Kshirsagar, M. P., V. R. Kalamkar, and R. R. Pande. 2020. Multi-response robust design optimization of natural draft biomass cook stove using response surface methodology and desirability function. Biomass Bioenergy 135 (March 2019):105507. doi:10.1016/j.biombioe.2020.105507.
  • Low, N. M. P. 1984. The thermal insulating properties of vermiculite. J. Therm. Envel. Build. Sci 8 (2):107–15. doi:10.1177/109719638400800205.
  • Magnone, E., S. K. Park, and J. H. Park. 2016. Effects of moisture contents in the common oak on carbonaceous aerosols generated from combustion processes in an indoor wood stove. Combust. Sci. Technol. 188 (6):982–96. doi:10.1080/00102202.2015.1136300.
  • Mehta, Y., and C. Richards. 2020. Effect of air flow rate and secondary air jets on the operation of TLUD gasifier cookstove. Int. J. Sustain. Energy Taylor & Francis. 39 (3):207–17. doi:10.1080/14786451.2019.1671388.
  • Memon, S. A., M. S. Jaiswal, Y. Jain, V. Acharya, and D. S. Upadhyay. 2020. A comprehensive review and a systematic approach to enhance the performance of improved cookstove (ICS). J. Therm. Anal. Calorim. Springer International Publishing. 141 (6):2253–63. doi:10.1007/s10973-020-09736-2.
  • Pande, R. 2019. Improving traditional multipot biomass cookstove: An experimental and numerical approach. VNIT, Visveswaraya National Institute of Technology. doi:10.1515/9783110800487.39.
  • Pande, R. R., V. R. Kalamkar, and M. Kshirsagar. 2019. Making the popular clean: Improving the traditional multipot biomass cookstove in Maharashtra, India. Environ. Dev. Sustain. Springer Netherlands. 21 (3):1391–410. doi:10.1007/s10668-018-0092-4.
  • Pande, R. R., V. R. Kalamkar, and M. P. Kshirsagar (2019) ‘The effect of inlet area ratio on the performance of multi-pot natural draft biomass cookstove’, Proceedings of the National Academy of Sciences India Section A - Physical Sciences. Springer India. doi: 10.1007/s40010-019-00650-3.
  • Pande, R. R., M. P. Kshirsagar, and V. R. Kalamkar. 2018. Experimental and CFD analysis to study the effect of inlet area ratio in a natural draft biomass cookstove. In Environment, development and sustainability, Springer Netherlands, ( 0123456789). doi:10.1007/s10668-018-0269-x.
  • Pande, R. R., S. K. Sharma, and V. R. Kalamkar. 2019. Experimental and numerical analyses for designing two-pot biomass cookstove. J. Braz. Soc. Mech. Sci. Eng. Springer Berlin Heidelberg. 41 (8):1–18. doi:10.1007/s40430-019-1839-z.
  • Perlite Institute. 2011. Physical characteristics of perlite. https://www.perlite.org/library-perlite-info/perlite-library.html.
  • Prasad, K. K. 1981. Some studies on open fires, shielded fires and heavy stoves. Netherlands: Eindhoven University of Technology. https://pure.tue.nl/ws/portalfiles/portal/4414520/140651.pdf.
  • Pundle, A. 2019. Combustion, Heat Transfer and Soot Formation in Biomass-Burning Cookstoves. Washington: University of Washington.
  • Report, L. (2014. Clean and improved cooking in Sub-Saharan Africa. ( 98664), 182. Available at: http://documents.worldbank.org/curated/en/164241468178757464/pdf/98664-REVISED-WP-P146621-PUBLIC-Box393185B.pdf.
  • Sambandam, S., K. Balakrishnan, S. Ghosh, A. Sadasivam, S. Madhav, R. Ramasamy, M. Samanta, K. Mukhopadhyay, H. Rehman, and V. Ramanathan. 2015. Can currently available advanced combustion biomass cook-stoves provide health relevant exposure reductions? Results from Initial assessment of select commercial models in India. EcoHealth 12 (1):25–41. doi:10.1007/s10393-014-0976-1.
  • Scott, P. nodate. Rocket stove design guide.
  • Sharook, S., D. Sathyan, and M. K. Madhavan. 2020. Thermo-mechanical and durability properties of expanded perlite aggregate foamed concrete. Proceedings of the Institution of Civil Engineers - Construction Materials, pp. 1–9. doi: 10.1680/jcoma.20.00041.
  • Singh, A., B. Tuladhar, K. Bajracharya, and A. Pillarisetti. 2012. Assessment of effectiveness of improved cook stoves in reducing indoor air pollution and improving health in Nepal. Energy Sustain. Dev. International Energy Initiative. 16 (4):406–14. doi:10.1016/j.esd.2012.09.004.
  • Sutar, K. B., S. Kohli, M. R. Ravi, and A. Ray. 2015. Biomass cookstoves: A review of technical aspects. Renew. Sustain. Energy Rev. 41:1128–66. doi:10.1016/j.rser.2014.09.003.
  • Tryner, J., B. D. Willson, and A. J. Marchese. 2014. The effects of fuel type and stove design on emissions and efficiency of natural-draft semi-gasifier biomass cookstoves. Energy Sustain. Dev. Elsevier Ltd. 23 (1):99–109. doi:10.1016/j.esd.2014.07.009.
  • Tucker, M. 1999. Can solar cooking save the forests? Ecol. Econ. 31 (1):77–89. doi:10.1016/S0921-8009(99)00038-5.
  • The Vermiculite Association. 2014. Vermiculite Data. New York, USA: The Vermiculite Association. https://www.vermiculite.org/.
  • Van Zyl, L., J. Tryner, K. R. Bilsback, N. Good, A. Hecobian, A. Sullivan, Y. Zhou, J. L. Peel, and J. Volckens. 2019. Effects of fuel moisture content on emissions from a rocket-elbow cookstove. Environ. Sci. Technol. 53 (8):4648–56. doi:10.1021/acs.est.9b00235.
  • World Health Organization (2018) Household air pollution and health. Available at: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health.
  • World Health Organization. 2018. Opportunities for transition to clean household energy in India. WHO. https://www.who.int/publications/i/item/9789241513999
  • Yao, Z., S. You, Y. Dai, and C.-H. Wang. 2018. Particulate emission from the gasification and pyrolysis of biomass: Concentration, size distributions, respiratory deposition-based control measure evaluation. Environ. Pollut. 242:1108–18. doi:10.1016/j.envpol.2018.07.126.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.