104
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Preparation of New Eco-Friendly Gel Foam Based on Biomass Pectin Material for Fire Prevention of Coal

, , , , , , & show all
Received 19 Aug 2022, Accepted 26 Nov 2022, Published online: 01 Dec 2022

References

  • Cao, L. Q., W. Lu, A. Mata, K. Nishinari, and Y. P. Fang. 2020. Egg-box model-based gelation of alginate and pectin: A review. Carbohydr. Polym 242:116389. doi:10.1016/j.carbpol.2020.116389.
  • Celus, M., C. Kyomugasho, L. Salvia-Trujillo, J. Van Audenhove, A. M. Van Loey, T. Grauwet, and M. E. Hendrickx. 2018. Interactions between citrus pectin and Zn2+ or Ca2+ and associated in vitro Zn2+ bioaccessibility as affected by degree of methylesterification and blockiness. Food. Hydrocoll 79:319–30. doi:10.1016/j.foodhyd.2018.01.003.
  • Chi, K. Y., J. Wang, L. Y. Ma, J. F. Wang, and C. S. Zhou. 2022. Synergistic inhibitory effect of free radical scavenger/inorganic salt compound inhibitor on spontaneous combustion of coal. Combust. Sci. Technol. 194 (10):2146–62. doi:10.1080/00102202.2020.1858290.
  • Guo, Q., W. X. Ren, J. T. Zhu, and J. T. Shi. 2019. Study on the composition and structure of foamed gel for fire prevention and extinguishing in coal mines. Process Saf. Environ. Protect 128:176–83. doi:10.1016/j.psep.2019.06.001.
  • Han, W. Y., Y. H. Meng, C. Y. Hu, G. R. Dong, Y. L. Qu, H. Deng, and Y. R. Guo. 2017. Mathematical model of Ca2+ concentration, pH, pectin concentration and soluble solids (sucrose) on the gelation of low methoxyl pectin. Food. Hydrocoll 66:37–48. doi:10.1016/j.foodhyd.2016.12.011.
  • Han, C., S. B. Nie, Z. G. Liu, S. Liu, H. Zhong, J. Y. Li, H. R. Zhang, and Z. H. Wang. 2022. A novel biomass sodium alginate gel foam to inhibit the spontaneous combustion of coal. Fuel. 314:122779. doi:10.1016/j.fuel.2021.122779.
  • He, Q. L., S. C. Xing, W. Peng, S. B. Nie, C. Han, F. B. Kong, and Q. Guo. 2022. Investigation of intumescent flame retardant THEIC/APP on the thermal behaviors of coal based on thermal oxidative kinetics. Combust. Sci. Technol. 194 (10):2087–100. doi:10.1080/00102202.2020.1858287.
  • Huang, Z. A., J. Y. Li, Y. K. Gao, Z. L. Shao, and Y. H. Zhang. 2022a. Thermal behavior and microscopic characteristics of water-soaked coal spontaneous combustion. Combust. Sci. Technol. 194 (3):636–54. doi:10.1080/00102202.2020.1777993.
  • Huang, Z. A., G. H. Wang, Y. H. Zhang, Y. C. Yin, X. M. Hu, Y. K. Gao, Y. F. Yang, and H. H. Xin. 2022b. Inhibition characteristics of a novel PAM/SA-Ca(OH)2 composite inhibitor to control coal spontaneous combustion. Fuel. 314:122750. doi:10.1016/j.fuel.2021.122750.
  • Kiran-Yildirim, B., S. Titiz-Sargut, and P. Sayan. 2018. Calcium lactate pentahydrate crystallization in the presence of pentanoic acid. Chem. Eng. Technol 41 (6):1244–51. doi:10.1002/ceat.201700672.
  • Lessa, E. F., M. S. Gularte, E. S. Garcia, and A. R. Fajardo. 2017. Orange waste: A valuable carbohydrate source for the development of beads with enhanced adsorption properties for cationic dyes. Carbohydr. Polym 157:660–68. doi:10.1016/j.carbpol.2016.10.019.
  • Li, J. L., W. Lu, B. Kong, Y. J. Cao, G. S. Qi, and C. R. Qin. 2019. Mechanism of gas generation during low-temperature oxidation of coal and model compounds. Energy. Fuels 33 (2):1527–39. doi:10.1021/acs.energyfuels.8b03571.
  • Lu, Y. 2017. Laboratory study on the rising temperature of spontaneous combustion in coal stockpiles and a paste foam suppression technique. Energy. Fuels 31 (7):7290–98. doi:10.1021/acs.energyfuels.7b00649.
  • Lu, W., X. D. Zhang, Y. Yuan, G. S. Qi, X. M. Hu, J. L. Li, Y. T. Liang, and B. L. Guo. 2021. Study on the characteristics and mechanism of a new type of antioxidant gel foam for coal spontaneous combustion prevention. Colloid Surf. A-Physicochem. Eng. Asp 628:127254. doi:10.1016/j.colsurfa.2021.127254.
  • Luo, Z. Z., B. T. Qin, Q. L. Shi, H. J. Hu, P. Sheng, and S. Y. Tian. 2022. Compound effects of water immersion and pyritic sulfur on the microstructure and spontaneous combustion of non-caking coal. Fuel. 308:121999. doi:10.1016/j.fuel.2021.121999.
  • Mahmoud, M. E., and A. K. Mohamed. 2020. Novel derived pectin hydrogel from mandarin peel based metal-organic frameworks composite for enhanced Cr(VI) and Pb(II) ions removal. Int. J. Biol. Macromol. 164:920–31. doi:10.1016/j.ijbiomac.2020.07.090.
  • Morlot, J., Y. Robeyns, K. Filinchuk, T. Leyssens, and T. Leyssens. 2020. Exploring the solid-state phases and thermodynamics of calcium l-lactate. Food Chem. 325:126884. doi:10.1016/j.foodchem.2020.126884.
  • Nastasi, J. R., V. Kontogiorgos, V. D. Daygon, and M. A. Fitzgerald. 2022. Pectin-based films and coatings with plant extracts as natural preservatives: A systematic review. Trends Food Sci. 120:193–211. doi:10.1016/j.tifs.2022.01.014.
  • Pan, X., W. T. Zhao, Y. X. Wang, Y. Y. Xu, W. T. Zhang, F. Lao, X. J. Liao, and J. H. Wu. 2022. Physicochemical and structural properties of three pectin fractions from muskmelon (Cucumis melo) and their correlation with juice cloud stability. Food Hydrocoll. 124:107313. doi:10.1016/j.foodhyd.2021.107313.
  • Patenaude, M., S. Campbell, D. Kinio, and T. Hoare. 2014. Tuning gelation time and morphology of injectable hydrogels using ketone-hydrazide cross-linking. Biomacromolecules. 15 (3):781–90. doi:10.1021/bm401615d.
  • Prajapati, U., R. Asrey, E. Varghese, and R. R. Sharma. 2021. Effects of calcium lactate on postharvest quality of bitter gourd fruit during cold storage. Physiol Mol Biol. Plants 27 (8):1811–21. doi:10.1007/s12298-021-01045-8.
  • Qin, B. T., Y. W. Jia, Y. Lu, Y. Li, D. M. Wang, and C. X. Chen. 2015. Micro fly-ash particles stabilized Pickering foams and its combustion-retardant characteristics. Fuel. 154:174–80. doi:10.1016/j.fuel.2015.03.078.
  • Rehman, A., T. Ahmad, R. Aadil, M. J. Spotti, A. M. Bakry, I. M. Khan, L. Zhao, T. Riaz, and Q. Tong. 2019. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends Food Sci. Technol 90:35–46. doi:10.1016/j.tifs.2019.05.015.
  • Ren, W. X., Q. Guo, and Z. F. Wang. 2016. Application of foam-gel technology for suppressing coal spontaneous combustion in coal mines. Nat. Hazards 84 (2):1207–18. doi:10.1007/s11069-016-2499-2.
  • Shao, Z. Y., J. L. Lu, J. Ding, F. J. Fan, X. Y. Sun, P. Li, Y. Fang, and Q. H. Hu. 2021. Novel green chitosan-pectin gel beads for the removal of Cu(II), Cd(II), Hg(II) and Pb(II) from aqueous solution. Int. J. Biol. Macromol. 176:217–25. doi:10.1016/j.ijbiomac.2021.02.037.
  • Shi, Q. L., B. T. Qin, Y. H. Hao, and H. B. Li. 2022a. Experimental investigation of the flow and extinguishment characteristics of gel-stabilized foam used to control coal fire. Energy. 247:123484. doi:10.1016/j.energy.2022.123484.
  • Shi, Q. L., B. T. Qin, Y. Z. Xu, M. Y. Hao, X. Shao, and H. Zhuo. 2022b. Experimental investigation of the drainage characteristic and stability mechanism of gel-stabilized foam used to extinguish coal fire. Fuel. 313:122685. doi:10.1016/j.fuel.2021.122685.
  • Wang, X. D., Y. Li, T. T. Dai, X. M. He, M. S. Chen, C. M. Liu, R. H. Liang, and J. Chen. 2021. Preparation of pectin/poly (m-phenylenediamine) microsphere and its application for Pb2+ removal. Carbohydr Polym. 260:117811. doi:10.1016/j.carbpol.2021.117811.
  • Wang, D. M., H. H. Xin, X. R. Qi, G. L. Dou, G. S. Qi, and L. Y. Ma. 2016. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics. Combustion and Flame. 163:447–60. doi:10.1016/j.combustflame.2015.10.019.
  • Wang, G., G. Q. Yan, X. H. Zhang, W. Z. Du, Q. M. Huang, L. L. Sun, and X. Q. Zhang. 2016. Research and development of foamed gel for controlling the spontaneous combustion of coal in coal mine. J. Loss Prev. Process Ind. 44:474–86. doi:10.1016/j.jlp.2016.10.013.
  • Wu, M. Y., Y. T. Liang, Y. Y. Zhao, W. Wang, X. M. Hu, F. C. Tian, Z. L. He, Y. S. Li, and T. Y. Liu. 2021. Preparation of new gel foam and evaluation of its fire extinguishing performance. Colloid Surf. A-Physicochem. Eng. Asp 629:127443. doi:10.1016/j.colsurfa.2021.127443.
  • Xi, Z. L., B. X. Jin, and Z. Shan. 2021. Reaction mechanisms involving peroxy radical in the low-temperature oxidation of coal. Fuel. 300:120943. doi:10.1016/j.fuel.2021.120943.
  • Xi, Z. L., M. M. Li, X. Li, L. P. Lu, and J. W. Wang. 2022. Reaction mechanisms involving the hydroxyl radical in the low-temperature oxidation of coal. Fuel. 314:122732. doi:10.1016/j.fuel.2021.122732.
  • Xi, X., and Q. L. Shi. 2021. Study of the preparation and extinguishment characteristic of the novel high-water-retaining foam for controlling spontaneous combustion of coal. Fuel. 288:119354. doi:10.1016/j.fuel.2020.119354.
  • Xue, D., X. M. Hu, W. M. Cheng, M. Y. Wu, Z. A. Shao, Y. S. Li, Y. Y. Zhao, and K. Zhang. 2020a. Carbon dioxide sealing-based inhibition of coal spontaneous combustion: A temperature-sensitive micro-encapsulated fire-retardant foamed gel. Fuel. 266:117036. doi:10.1016/j.fuel.2020.117036.
  • Xue, D., X. M. Hu, W. M. Cheng, X. X. Yu, M. Y. Wu, Y. Y. Zhao, Y. Lu, R. K. Pan, H. Y. Niu, and S. Y. Hu. 2020b. Development of a novel composite inhibitor modified with proanthocyanidins and mixed with ammonium polyphosphate. Energy. 213:118901. doi:10.1016/j.energy.2020.118901.
  • Yan, B. R., X. M. Hu, W. M. Cheng, Y. Y. Zhao, W. Wang, Y. T. Liang, T. Y. Liu, Y. Feng, and D. Xue. 2021. A novel intumescent flame-retardant to inhibit the spontaneous combustion of coal. Fuel. 297:120768. doi:10.1016/j.fuel.2021.120768.
  • Yan, Z. H., D. D. Wang, R. X. He, N. Li, H. C. Zhou, Y. F. Wang, Y. M, K. D. Song, Y. Zhi, and Y. Teng. 2019. Microstructural characteristics of Shengli lignite during low-temperature oxidation and promotion effect of iron species. Fuel. 255:115830. doi:10.1016/j.fuel.2019.115830.
  • Zhang, L. L., Y. P. Bian, and D. L. Kuai. 2021a. Preparation and flame retardant property of nano-aluminum hydroxide foam for preventing spontaneous coal combustion. Fuel. 304:121494. doi:10.1016/j.fuel.2021.121494.
  • Zhang, W., J. Y. Song, Q. L. He, H. Y. Wang, W. L. Lyu, H. J. Feng, W. Q. Xiong, W. B. Guo, J. Wu, and L. Chen. 2020. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal. J. Hazard. Mater. 384:121445. doi:10.1016/j.jhazmat.2019.121445.
  • Zhang, L. L., W. J. Wu, J. Wei, Y. P. Bian, and H. G. Luo. 2021b. Preparation of foamed gel for preventing spontaneous combustion of coal. Fuel. 300:121024. doi:10.1016/j.fuel.2021.121024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.