778
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Investigation on the Effect of Charge Injection from Non-Thermal Plasma on Soot Formation in Laminar Coflow Diffusion Flame

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 16 Jul 2022, Accepted 20 Apr 2023, Published online: 14 May 2023

References

  • Ahn, M., D. Lim, T. Kim, and Y. Yoon. 2021. Pinch-off process of Burke–Schumann flame under acoustic excitation. Combust. Flame 231 (1):111478. doi:10.1016/j.combustflame.2021.111478.
  • Aslam, I., and M. B. J. Roeffaers. 2022. Carbonaceous nanoparticle air pollution: Toxicity And detection in biological samples. Nanomaterials 12 (22):3948. doi:10.3390/nano12223948.
  • Bennett, B. A. V., C. S. McEnally, L. D. Pfefferle, M. D. Smooke, and M. B. Colket. 2009. Computational and experimental study of the effects of adding dimethyl ether and ethanol to nonpremixed ethylene/air flames. Combust. Flame 156 (6):1289–302. doi:10.1016/j.combustflame.2009.01.020.
  • Bonczyk, P. 1991. Effects of metal additives on soot precursors and particulates in a C2H4/O2/N2/Ar premixed flame. Fuel 70 (12):1403–11. doi:10.1016/0016-2361(91)90006-V.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2020. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. 118 (11):5380–552. doi:10.1002/jgrd.50171.
  • Botero, M. L., N. Eaves, J. A. H. Dreyer, Y. Sheng, J. Akroyd, W. Yang, and M. Kraft. 2019. Experimental and numerical study of the evolution of soot primary particles in a diffusion flame. Proc Combust Inst 37 (2):2047–55. doi:10.1016/j.proci.2018.06.185.
  • Bowal, K., J. W. Martin, A. J. Misquitta, and M. Kraft. 2019 5. Ion-induced soot nucleation using a new potential for curved aromatics. Combust. Sci. Technol. 191 (5–6):747–65. doi:10.1080/00102202.2019.1565496.
  • Brandi, F., L. Labate, D. Rapagnani, R. Buompanea, A. di Leva, L. Gialanella, and L. A. Gizzi. 2020. Optical and spectroscopic study of a supersonic flowing helium plasma: Energy transport in the afterglow. Sci Rep 10 (1):5087. doi:10.1038/s41598-020-61988-y.
  • Burdett, N. A., and A. N. Hayhurst. 2018. Kinetic and thermodynamic measurements of the reactions of the positive ions, Mn+ and MnOH+, formed by adding manganese to fuel-rich flames of either H2 + O2 or C2H2 + O2. Combust. Flame 189 (1):315–24. doi:10.1016/j.combustflame.2017.10.022.
  • Calcote, H. F., D. B. Olson, and D. G. Keil. 1988. Are ions important in soot formation? Energy Fuels 2 (4):494-–504. doi:10.1021/ef00010a016.
  • Cao, S., M. Bin, D. Giassi, B. A. V. Bennett, M. B. Long, and M. D. Smooke. 2018. Effects of pressure and fuel dilution on coflow laminar methane–air diffusion flames: A computational and experimental study. Combust. Theory Model. 22 (2):316–37. doi:10.1080/13647830.2017.1403051.
  • Cha, M. S., S. Lee, K. Kim, and S.H. Chung. 2002. Soot suppression by nonthermal plasma in coflow jet diffusion flames using a dielectric barrier discharge. Combust. Flame 141 (4):438–47. doi:10.1016/j.combustflame.2005.02.002.
  • De Falco, G., M. Commodo, A. D’Anna, and P. Minutolo. 2017. The evolution of soot particles in premixed and diffusion flames by thermophoretic particle densitometry. Proc Combust Inst 36 (1):763–70. doi:10.1016/j.proci.2016.07.108.
  • Dobbins, R. R., J. Tinjero, J. Squeo, X. Zhao, R. J. Hall, M. B. Colket, M. B. Long, and M. D. Smooke. 2022. A combined experimental and computational study of soot formation in normal and microgravity conditions. Combust. Sci. Technol. 1–26. doi:10.1080/00102202.2022.2041621.
  • Dribinski, V., A. Ossadtchi, V. A. Mandelshtam, and H. Reisler. 2002. Reconstruction of abel-transformable images: The gaussian basis-set expansion abel transform method. Rev Sci Instrum 73 (7):2634–42. doi:10.1063/1.1482156.
  • Eaves, N. A. , Q. Zhang, F. Liu, H. Guo, and S. B. Dworkin. 2016. CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames. Comput. Phys. Commun 207 (1):464–77. doi:10.1016/j.cpc.2016.06.016.
  • Eckart, S., Y. Chunkan, U. Maas, and H. Krause. 2021. Experimental and numerical investigations on extinction strain rates in non-premixed counterflow methane and propane flames in an oxygen reduced environment. Fuel 298:120781. doi:10.1016/j.fuel.2021.120781.
  • Eliasson, B. and U. Kogelschatz. 1991. Nonequilibrium volume plasma chemical processing. IEEE Transactions on Plasma Science. 19 (6):1063–1077. doi:10.1109/27.125031.
  • Fialkov, A. B. 1997. Investigations on ions in flames. Prog. Energ. Combust. Sci. 23 (5–6):399–528. doi:10.1016/S0360-1285(97)00016-6.
  • Fuller, R., P. J. Landrigan, K. Balakrishnan, G. Bathan, S. Bose-O’Reilly, M. Brauer, J. Caravanos, T. Chiles, A. Cohen, L. Corra, et al. 2020. Pollution and health: A progress update. Lancet Planet. Health 6 (6):535–47. doi:10.1016/S2542-5196(22)00090-0.
  • Gibson, S., D. D. Hickstein, R. Yurchak, M. Ryazanov, D. Das, and G. Shih. 2021. PyAbel/PyAbel: v0.8.4. Apr. doi:10.5281/zenodo.4690660.
  • Giechaskiel, B., M. Maricq, L. Ntziachristos, C. Dardiotis, X. Wang, H. Axmann, A. Bergmann, and W. Schindler. 2014. Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number. J Aerosol Sci 67 (1):48–86. doi:10.1016/j.jaerosci.2013.09.003.
  • Glassman, I. 1998. Sooting laminar diffusion flames: Effect of dilution, additives, pressure, and microgravity. Symp. (Int.) Combust. 27 (1):1589–96. doi:10.1016/S0082-0784(98)80568-7.
  • Graham, D.L. 1991. Structure of laminar flames. Symp. (Int.) Combust. 23 (1):305–24. doi:10.1016/S0082-0784(06)80274-2.
  • Guo, J., J. M. Goodings, A. N. Hayhurst, and S. G. Taylor. 2003. A simple method for measuring positive ion concentrations in flames and the calibration of a nebulizer/atomizer. Combust. Flame 133 (3):335–43. doi:10.1016/S0010-2180(03)00020-8.
  • Hayhurst, A. N. 2022. Mass spectrometric sampling of flames: How ionic equilibria in flames produce sampling falsifications and “fake” ions, but provide kinetic and thermodynamic data on the reaction occurring. Prog. Energy Combust. Sci. 88 (1):100927. doi:10.1016/j.pecs.2021.100927.
  • Haynes, B. S., H. K. Jander, and H. G. Wagner. 1979. The effect of metal additives on the formation of soot in premixed flames. Symp. (Int.) Combust. 17 (1):1365–74. doi:10.1016/S0082-0784(79)80128-9.
  • Höft, H., M. M. Becker, and M. Kettlitz. 2016. Impact of gas flow rate on breakdown of filamentary dielectric barrier discharges. Phys Plasmas 23 (3):033504. doi:10.1063/1.4943278.
  • Horvatic, V., C. Vadla, and J. Franzke. 2014. Discussion of fundamental processes in dielectric barrier discharges used for soft ionization. Spectrochim. Acta B 100 (1):52–61. doi:10.1016/j.sab.2014.08.010.
  • Howard, J. B., and W. J. Kausch. 1980. Soot control by fuel additives. Prog. Energy Combust. Sci. 6 (3):263–76. doi:10.1016/0360-1285(80)90018-0.
  • Guo, J., P. Liu, E. Quadarella, K. Yalamanchi, I. Alsheikh, C. Chu, F. Liu, Sarathy, S. M., W. L. Roberts , and H. G. Im. 2022. Assessment of physical soot inception model in normal and inverse laminar diffusion flames. Combust. Flame 246:112420. doi:10.1016/j.combustflame.2022.112420.
  • Ju, Y., and W. Sun. 2015. Plasma assisted combustion: Dynamics and chemistry. Prog. Energy Combust. Sci. 48 (1):21–83. doi:10.1016/j.pecs.2014.12.002.
  • Kailasanathan, R. K. A., J. Zhang, T. Fang, and W. L. Roberts. 2014. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure. Combust. Sci. Technol. 186 (6):815–28. doi:10.1080/00102202.2013.878710.
  • Kaiser, S. A., and J. H. Frank. 2009. Spatial scales of extinction and dissipation in the near field of non-premixed turbulent jet flames. Proc Combust Inst 32 (2):1639–46. doi:10.1016/j.proci.2008.05.082.
  • Karakas, E., M. A. Akman, and M. Laroussi. 2012. The evolution of atmospheric-pressure low-temperature plasma jets: Jet current measurements. Plasma Sources Sci. Technol. 21 (3):10. doi:10.1088/0963-0252/21/3/034016.
  • Karnani, S., and D. Dunn-Rankin. 2013. Visualizing CH* chemiluminescence in sooting flames. Combust. Flame 160 (10):2275–78. doi:10.1016/j.combustflame.2013.05.002.
  • Kostov, K. G., T. M. C. Nishime, M. Machida, A. C. Borges, V. Prysiazhnyi, and C. Y. Koga-Ito. 2015. Study of cold atmospheric plasma jet at the end of flexible plastic tube for microbial decontamination. Plasma Processes Polym 12 (12):1383–1391. doi:10.1002/ppap.201500125.
  • Lawton, J., and F. Weinberg. 1969. Electrical aspects of combustion. Clarendon Press, Oxford.
  • Lefkowitz, J. K., M. Uddi, B. C. Windom, G. Lou, and Y. Ju. 2015. In situ species diagnostics and kinetic study of plasma activated ethylene dissociation and oxidation in a low temperature flow reactor. Proc Combust Inst 35 (3):3505–12. doi:10.1016/j.proci.2014.08.001.
  • Liu, H., and W. Cai. 2020. Recent progress in electric-field assisted combustion: A brief review. Front. Energy 18 (1):58–73.
  • Liu, F., Y. Hua, W. Han, and C.F. Lee. 2018. Effect of toluene addition on the PAH formation in laminar coflow diffusion flames of n-heptane and isooctane. Energy Fuels 32 (6):7142–52. doi:10.1021/acs.energyfuels.8b00745.
  • Liu, A., K. H. Luo, S. Rigopoulos, and W. Jones. 2021. Effects of the electric field on soot formation in combustion: A coupled charged particle PBE-CFD framework. Combust. Flame 239 (1):111796. doi:10.1016/j.combustflame.2021.111796.
  • Liu, Y., J. Tan, M. Wan, L. Zhang, and X. Yao. 2020. Quantitative measurement of OH* and CH* Chemiluminescence in jet diffusion flames. ACS. Omega 5 (26):15922–30. doi:10.1021/acsomega.0c01093.
  • Lu, X., M. Laroussi, and V. Puech. 2012. On atmospheric-pressure nonequilibrium plasma jets and plasma bullets. Plasma Sources Sci. Technol. 21 (3):034005. doi:10.1088/0963-0252/21/3/034005.
  • Marsh, N. D., I. Preciado, E. G. Eddings, A. F. Sarofim, A. B. Palotas, and J. D. Robertson. 2007. Evaluation of organometallic fuel additives for soot Suppression. Combust. Sci. Technol. 179 (5):987–1001. doi:10.1080/00102200600862497.
  • Maricq, M. M. 2006. A comparison of soot size and charge distributions from ethane, ethylene, acetylene, and benzene/ethylene premixed flames. Combust. Flame 144 (4):730–43. doi:10.1016/j.combustflame.2005.09.007.
  • Martin, J. W., M. Botero, R. I. Slavchov, K. Bowal, J. Akroyd, S. Mosbach, and M. Kraft. 2018. Flexoelectricity and the formation of carbon nanoparticles in flames. J. Phys. Chem. C 122 (38):22210–15. doi:10.1021/acs.jpcc.8b08264.
  • Martin, J. W., K. L. Bowal, A. Menon, R. I. Slavchov, J. Akroyd, S. Mosbach, and M. Kraft. 2019. Polar curved polycyclic aromatic hydrocarbons in soot formation. Proc Combust Inst 37 (1):1117–23. doi:10.1016/j.proci.2018.05.046.
  • Martin, J. W., M. Salamanca, and M. Kraft. 2022. Soot inception: Carbonaceous nanoparticle formation in flames. Prog. Energy Combust. Sci. 88 (1):100956. doi:10.1016/j.pecs.2021.100956.
  • Mulla, I. A., P. Desgroux, B. Lecordier, and A. Cessou. 2021. Comprehensive characterization of sooting butane jet flames, Part 1: Soot, soot-precursor, and reaction zone. Combust. Flame 233 (1):111595. 2021. doi:10.1016/j.combustflame.2021.111595.
  • Park, D. G., B. C. Choi, M. S. Cha, and S. H. Chung. 2014. Soot reduction under DC electric fields in counterflow non-premixed laminar ethylene flames. Combust. Sci. Technol. 186 (4–5):644–56. doi:10.1080/00102202.2014.883794.
  • Place, E. R., and F. J. Weinberg. 1966. Electrical control of flame carbon. Proc. Math. Phys. Eng. Sci. 289 (1):192–205.
  • Qi, D., Y. Ying, D. Mei, T. Xin, and D. Liu. 2023. Soot characteristics from diffusion flames coupled with plasma. Fuek 332:126126. doi:10.1016/j.fuel.2022.126126.
  • Reuter, C. B., and T. M. Ombrello. 2022. Numerical simulations of ozone addition to strained flames. Combust. Sci. Technol. 194 (15):3225–45. doi:10.1080/00102202.2021.1923703.
  • Ritrievi, K. E., J. P. Longwell, and A. F. Sarofim. 1987. The effects of ferrocene addition on soot particle inception and growth in premixed ethylene flames. Combust. Flame 70 (1):17–31. doi:10.1016/0010-2180(87)90156-8.
  • Schmidt, J., and B. Ganguly. 2013. Effect of pulsed, sub-breakdown applied electric field on propane/air flame through simultaneous OH/acetone PLIF. Combust. Flame 160 (12):2820–26. doi:10.1016/j.combustflame.2013.06.031.
  • Smooke, M. D., R. J. Hall, M. B. Colket, J. Fielding, M. B. Long, C. S. McEnally, and L. D. Pfefferle. 2004. Investigation of the transition from lightly sooting towards heavily sooting co-flow ethylene diffusion flames. Combust. Theory Model. 8 (3):593–606. doi:10.1088/1364-7830/8/3/009.
  • Smooke, M. D., M. B. Long, B. C. Connelly, M. B. Colket, and R. J. Hall. 2005. Soot formation in laminar diffusion flames. Combust. Flame 143 (4):613–28. doi:10.1016/j.combustflame.2005.08.028.
  • Starikovskiy, A., and N. Aleksandrov. 2013. Plasma-assisted ignition and combustion. Prog. Energy Combust. Sci. 39 (1):61–110. doi:10.1016/j.pecs.2012.05.003.
  • Tang, Y., J. Sun, B. Shi, S. Li, and Q. Yao. 2021. Extension of flammability and stability limits of swirling premixed flames by AC powered gliding arc discharges. Combust. Flame 231 (1):111483. doi:10.1016/j.combustflame.2021.111483.
  • Tan, Y. R., M. Salamanca, J. Bai, J. Akroyd, and M. Kraft. 2021. Structural effects of C3 oxygenated fuels on soot formation in ethylene coflow diffusion flames. Combust. Flame 232:111512. doi:10.1016/j.combustflame.2021.111512.
  • Tan, Y. R., M. Salamanca, L. Pascazio, J. Akroyd, and M. Kraft. 2021. The effect of poly(oxymethylene) dimethyl ethers (PODE3) on soot formation in ethylene/PODE3 laminar coflow diffusion flames. Fuel 283:118769. doi:10.1016/j.fuel.2020.118769.
  • Walsh, K. T., Long, M. B., M. A. Tanoff, and M. D. Smooke. 1998. Experimental and computational study of CH, CH*, and OH* in an axisymmetric laminar diffusion flame. Symp. (Int.) Combust. 27 (1):615–23. doi:10.1016/S0082-0784(98)80453-0.
  • Wang, H., X. Rui, K. Wang, C. T. Bowman, R. K. Hanson, D. F. Davidson, K. Brezinsky, and F. N. Egolfopoulos. 2018. A physics-based approach to modeling real-fuel combustion chemistry - I. Evidence from experiments, and thermodynamic, chemical kinetic and statistical considerations. Combust. Flame 193:502–19. doi:10.1016/j.combustflame.2018.03.019.
  • Wang, H., B. Weiner, and M. Frenklach. 1993. Theoretical study of reaction between phenylvinyleum ion and acetylene. J Phys Chem 97 (40):10364–71. doi:10.1021/j100142a017.
  • Weilmünster, P., A. Keller, and K.-H. Homann. 1999. Large molecules, radicals, ions, and small soot particles in fuel-rich hydrocarbon flames: Part I: Positive ions of polycyclic aromatic hydrocarbons (PAH) in low-pressure premixed flames of acetylene and oxygen. Combust. Flame 116 (1–2):62–83. doi:10.1016/S0010-2180(98)00049-2.
  • Weinberg, F. J. 1986. “Advanced combustion methods.” Tech Report: Imperial College of Science and Technology, London.
  • Xiong, Y., M. S. Cha, and S. H. Chung. 2015. AC electric field induced vortex in laminar coflow diffusion flames. Proc Combust Inst 35 (3):3513–20. doi:10.1016/j.proci.2014.08.027.
  • Xu, G., Y. Geng, X. Li, X. Shi, and G. Zhang. 2021. Characteristics of a kHz helium atmospheric pressure plasma jet interacting with two kinds of targets. Plasma Sci. Technol. 23 (9):95401. doi:10.1088/2058-6272/ac071a.
  • Yousfi, M., N. Merbahi, A. Pathak and, and O. Eichwald. 2014. Low temperature plasmas at atmospheric pressure: Toward new pharmaceutical treatments in medicine. Fundam. Clin. Pharmacol 28 (2):123–35. doi:10.1111/fcp.12018.
  • Zheng, Z., W. Nie, S. Zhou, Y. Tian, Y. Zhu, T. Shi, and Y. Tong. 2020. Characterization of the effects of a plasma injector driven by AC dielectric barrier discharge on ethylene-air diffusion flame structure. Open Phys. 18 (1):58–73. doi:10.1515/phys-2020-0008.