118
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Study on the Evolutionary Behavior of Methane Lean/Enriched Combustion Explosion Flame in Sliding Porous Material

, , , &
Received 17 Mar 2023, Accepted 10 May 2023, Published online: 15 May 2023

References

  • Bivol, G. Y., and S. V. Golovastov. 2020. The effect of porous coating on the flame acceleration in hydrogen–air mixture. Process Saf. Environ. 137 (C):128–39. doi:10.1016/j.psep.2020.02.016.
  • Chen, C. -K., Y. -L. Zhang, X. -L. Zhao, P. Lei, and Y. -L. Nie. 2020. Experimental study on the influence of obstacle aspect ratio on ethanol liquid vapor deflagration in a narrow channel. Int. J. Therm. Sci. 153:106354. doi:10.1016/j.ijthermalsci.2020.106354.
  • Duan, Y., F. Long, J. Huang, H. Jia, Y. Bu, and S. Yu. 2022. Effects of porous materials with different thickness and obstacle layout on methane/hydrogen mixture explosion with low hydrogen ratio. Int. J. Hydrogen Energy 47 (63):27237–49. doi:10.1016/J.IJHYDENE.2022.06.065.
  • Duan, Y., S. Wang, Y. Yang, Y. Li, and K. Zheng. 2021. Experimental study on methane explosion characteristics with different types of prous. J. Loss Prev. Process Ind. 69 (104): 104370–78. doi:10.1016/jlp.2020.140370.
  • Duan, Y., Y. Yang, Y. Li, S. Wang, and B. Pei. 2020. Study on the explosion characteristics of methane/air premixed gas under the inhibition of sliding airtight device. Energy Sources, Part A: Recovery, Util. Environ. Eff. 1–17. doi:10.1080/15567036.2020.1776799.
  • Edalati-Nejad, A., S. A. Fanaee, M. Ghodrat, and J. Khadem. 2021. Investigation of unsteady premixed micro/macro counterflow flames for lean to rich methane/air mixture. J. Energy Res. Technol 143 (5). doi:10.1115/1.4049462.
  • Fursenko, R. V., V. V. Gubernov, V. A. Kosyakov, A. A. Shupik, and B. Kichatov. 2020. Combustion of lean methane–air flames in mesoscale reactor with opposite gas flows. Combust. Sci. Technol 194 (9):1872–94. doi:10.1080/00102202.2020.1842381.
  • He, S., L. Su, H. Fan, and R. Ren. 2019. Methane explosion accidents of tunnels in sw china. null 10 (1):667–77. doi:10.1080/19475705.2018.1541826.
  • Kazemian, Y., S. Rashidi, J. A. Esfahani, and O. Samimi-Abianeh. 2021. Effects of grains shapes of porous media on combustion onset—a numerical simulation using lattice Boltzmann method. Comp. Math. Appl. 81:547–61. doi:10.1016/j.camwa.2019.10.015.
  • Krivokorytov, M. S., V. V. Goluband, and V. V. Volodin. 2012. The effect of acoustic oscillations on diffusion combustion of methane. Tech. Phys. Lett 38 (5):478–80. doi:10.1134/s1063785012050240.
  • Kundu, S., J. Zanganehand, and B. Moghtaderi. 2016. A review on understanding explosions from methane–air mixture. J. Loss Prev. Process Ind. 40:507–23. doi:10.1016/j.jlp.2016.02.004.
  • Li, L., F. Wu, Y. Cao, F. Cheng, D. Wang, H. Li, Z. Yu, and J. You. 2022. Sustainable development index of shale gas exploitation in china, the UK, and the us. null 12:100202–12. doi:10.1016/j.ese.2022.100202.
  • Mardani, A., A. Azimi, and H. Karimi Motaalegh Mahalegi. 2021. An experimental study on kerosene spray combustion under conventional and hot-diluted conditions. Combust. Sci. Technol 194 (13):2712–51. doi:10.1080/00102202.2021.1887156.
  • Mitu, M., V. Giurcan, D. Razus, and D. Oancea. 2017. Inert gas influence on the laminar burning velocity of methane-air mixtures. J. Hazard. Mater. 321:440–48. doi:10.1016/j.jhazmat.2016.09.033.
  • Mitu, M., V. Giurcan, D. Razus, and D. Oancea. 2020. Influence of initial pressure and vessel’s geometry on deflagration of stoichiometric methane–air mixture in small-scale closed vessels. Energy Fuels. 34 (3):3828–35. doi:10.1021/acs.energyfuels.9b04450.
  • Nechipurenko, S., T. Miroshnichenko, N. Pestovskii, S. Tskhai, B. Kichatov, V. Gubernov, V. Bykov, and U. Maas. 2020. Experimental observation of diffusive-thermal oscillations of burner stabilized methane-air flames. Combust. Flame 213:202–10. doi:10.1016/j.combustflame.2019.12.016.
  • Nie, B., L. Yangand, and J. Wang. 2016. Experiments and mechanisms of gas explosion suppression with foam ceramics. Combust. Sci. Technol 188 (11–12):2117–27. doi:10.1080/00102202.2016.1218161.
  • Peng, C., D. Fengand, and H. Long. 2022. Assessing the contribution of natural gas exploitation to the local economic growth in china. Energies 15 (16):5853–70. doi:10.3390/en15165853.
  • Pramod, B. V. N., J. P. Raj, C. H. Parashar, A. Kartha, and S. R. Nagaraja. 2019. Attenuation of shock waves by using porous media. Emerging Trends Mech. Eng 2080 (1):030015–21. doi:10.1063/1.5092918.
  • Ran, D., J. Cheng, R. Zhang, Y. Wang, and Y. Wu. 2021. Damages of underground facilities in coal mines due to gas explosion shock waves: An overview. Shock Vib. 2021:1–11. doi:10.1155/2021/8451241.
  • Salomone, H. D., and E. Cyrulies. 2023. The effect of temperature on the coefficient of elasticity of a spring: Construction of a device for its determination and calculation of its internal energy as a training practice. Eur. J. Phys. 44 (2):025005. doi:10.1088/1361-6404/acb46f.
  • Shao, H., C. Wangand, and H. Yu. 2020. Effect of copper foam on explosion suppression at different positions in the pipe. Powder Technol. 360:695–703. doi:10.1016/j.powtec.2019.09.078.
  • Wang, Z., P. G. A. Atangana Njock, and L. -S. Zhao. 2021. A brief report on the explosion on 13 June 2021 at a market in Shiyan, China. Safety 7 (4):81–89. doi:10.3390/safety7040081.
  • Wang, Y., S. Jiang, Z. Wu, H. Shao, K. Wang, and L. Wang. 2018. Study on the inhibition influence on gas explosions by metal foam based on its density and coal dust. J. Loss Prev. Process Ind. 56:451–57. doi:10.1016/j.jlp.2018.09.009.
  • Wen, X., Z. Guo, F. Wang, R. Pan, Z. Liu, and X. Zhang. 2020. Experimental study on the quenching process of methane/air deflagration flame with porous media. J. Loss Prev. Process Ind. 65:104121. doi:10.1016/j.jlp.2020.104121.
  • Wu, J., Y. Zhao, R. Zhou, J. Cai, Y. Bai, and L. Pang. 2022. Suppression effect of porous media on natural gas explosion in utility tunnels. Fire Saf. J. 128 (prepublish):103522–622. doi:10.1016/j.firesaf.2021.103522.
  • Xiao, G., S. Wang, H. Mi, and F. Khan. 2022. Analysis of obstacle shape on gas explosion characteristics. Process Saf. Environ. 161:78–87. doi:10.1016/j.psep.2022.03.019.
  • Xie, S. Q., D. Y. Li, L. D. Chen, and R. Zhou. 2019. Numerical simulation on explosion overpressure features of methane-air premixed gas at different concentrations in utility tunnels.Pdf. Int. J. Wireless Mobile Comp. 16 (No. 1):1–6. doi:10.1504/IJWMC.2019.097414.
  • Zhang, J., W. Xu, and L. Wang. 2011. An improved adaptive active queue management algorithm based on nonlinear smoothing. Procedia. Eng. 15:2369–73. doi:10.1016/j.proeng.2011.08.444.
  • Zheng, D., J. Zhang, Z. Liu, Q. Liu, C. Liu, W. Yao, M. Li. 2023. Effects of pipeline pressure on diffusion characteristics of leaked natural gas in tunnel space. ACS. Omega 8 (11):10235–41. doi:10.1021/acsomega.2c07728.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.