171
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Lignin-Based Hydrogel Reinforced Dry Water as Inhibitor for Coal Spontaneous Combustion

, , , , , , , & show all
Received 07 Mar 2023, Accepted 12 May 2023, Published online: 15 May 2023

References

  • Bian, H., L. Wei, C. Lin, Q. Ma, H. Dai, and J. Y. Zhu. 2018. Lignin-containing cellulose nanofibril-reinforced polyvinyl alcohol hydrogels. ACS Sust. Chem & Eng 6:4821–28. doi:10.1021/acssuschemeng.7b04172.
  • Chen, G., X. Ma, M. Lin, Y. Lin, and Z. Yu. 2015. Study on thermochemical kinetic characteristics and interaction during low temperature oxidation of blended coals. J. Energy Inst. 88:221–28. doi:10.1016/j.joei.2014.09.007.
  • Chen, X., A. Fan, B. Yuan, Y. Sun, Y. Zhang, and Y. Niu. 2019. Renewable biomass gel reinforced core-shell dry water material as novel fire extinguishing agent. J. Loss Prevent Proc 59:14–22. doi:10.1016/j.jlp.2019.02.008.
  • Cheng, W., X. Hu, J. Xie, and Y. Zhao. 2017. An intelligent gel designed to control the spontaneous combustion of coal: Fire prevention and extinguishing properties. Fuel 210:826–35. doi:10.1016/j.fuel.2017.09.007.
  • Dou, G., J. Liu, Z. Jiang, H. Jian, and X. Zhong. 2022. Preparation and characterization of a lignin based hydrogel inhibitor on coal spontaneous combustion. Fuel 308:122074–84. doi:10.1016/j.fuel.2021.122074.
  • Gu, P., W. Liu, Q. Hou, and Y. Ni. 2021. Lignocellulose-derived hydrogel/aerogel-based flexible quasi-solid-state supercapacitors with high-performance: A review. J. Mate. Chem. A 9:14233–64. doi:10.1039/D1TA02281D.
  • Han, Z., Y. Zhang, Z. Du, F. Xu, S. Li, and J. Zhang. 2017. New-type gel dry-water extinguishants and its effectiveness. J. Clean. Prod. 166:590–600. doi:10.1016/j.jclepro.2017.08.005.
  • He, S., C. Ruan, Y. Shi, G. Chen, Y. Ma, H. Dai, X. Chen, and X. Yang. 2021. Insight to hydrophobic SiO(2) encapsulated SiO(2) gel: Preparation and application in fire extinguishing. J. Hazard. Mater. 405:124216. doi:10.1016/j.jhazmat.2020.124216.
  • Huang, Y., M. Shi, and C. Zhu. 2020. What are the resource benefits of circulating fluidized bed power generation technology? Take some key thermal power units in China as an example. Int. J. Energ. Res. 44:4687–702. doi:10.1002/er.5251.
  • Huang, Z., X. Liu, Y. Gao, Y. Zhang, Z. Li, H. Wang, and X. Shi. 2019. Experimental study on the compound system of proanthocyanidin and polyethylene glycol to prevent coal spontaneous combustion. Fuel 254:115610–19. doi:10.1016/j.fuel.2019.06.018.
  • Kim, C. J., and C. H. Sohn. 2012. A novel method to suppress spontaneous ignition of coal stockpiles in a coal storage yard. Fuel Process. Technol. 100:73–83. doi:10.1016/j.fuproc.2012.03.011.
  • Klemm, D., B. Heublein, H. P. Fink, and A. Bohn. 2005. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte. Chemie Int. Edition 44:3358–93. doi:10.1002/anie.200460587.
  • Lee, E., H. Son, and Y. Choi. 2020. Elucidating the effects of particle sizes on the fire extinguishing performance of core-shell dry water. Korean J. Chem. Eng 37:1642–48. doi:10.1007/s11814-020-0632-0.
  • Li, Q. -W., Y. Xiao, K. -Q. Zhong, C. -M. Shu, H. -F. Lü, J. Deng, and S. Wu. 2020. Overview of commonly used materials for coal spontaneous combustion prevention. Fuel 275:117981–95. doi:10.1016/j.fuel.2020.117981.
  • Li, S., G. Zhou, Y. Wang, B. Jing, and Y. Qu. 2019. Synthesis and characteristics of fire extinguishing gel with high water absorption for coal mines. Process Saf. Environ. 125:207–18. doi:10.1016/j.psep.2019.03.022.
  • Li, Y., X. Hu, W. Cheng, Z. Shao, D. Xue, Y. Zhao, and W. Lu. 2020. A novel high-toughness, organic/inorganic double-network fire-retardant gel for coal-seam with high ground temperature. Fuel 263:116779–88. doi:10.1016/j.fuel.2019.116779.
  • Licheng, L., Z. Zhiyang, W. Qunying, J. Li, and Y. Yifeng. 2014. Polyethylene as a novel low-temperature inhibitor for lignite coal. J. Therm. Anal. Calorim 117:1321–25. doi:10.1007/s10973-014-3876-2.
  • Lu, Y., Z. Xi, B. Jin, M. Li, and C. Ren. 2020. Reaction mechanism and thermodynamics of the elimination of peroxy radicals by an antioxidant enzyme inhibitor complex. Fuel 272:117719–29. doi:10.1016/j.fuel.2020.117719.
  • Ni, X., S. Zhang, Z. Zheng, and X. Wang. 2018. Application of water@silica core-shell particles for suppressing gasoline pool fires. J. Hazard. Mater. 341:20–27. doi:10.1016/j.jhazmat.2017.07.040.
  • Pan, R., C. Li, J. Chao, D. Hu, and H. Jia. 2023. Thermal properties and microstructural evolution of coal spontaneous combustion. Energy 262:125400–07. doi:10.1016/j.energy.2022.125400.
  • Pan, R., Y. Li, J. Chao, H. Jia, and J. Wang. 2022. Heat release characteristics of L-Malic acid inhibited-coal oxidation. Combust. Sci. Technol 1–16. doi:10.1080/00102202.2022.2158734.
  • Ren, X., X. Hu, D. Xue, Y. Li, Z. Shao, H. Dong, W. Cheng, Y. Zhao, L. Xin, and W. Lu. 2019. Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal. J. Hazard. Mater. 371:643–54. doi:10.1016/j.jhazmat.2019.03.041.
  • Santomaso, A., P. Lazzaro, and P. Canu. 2003. Powder flowability and density ratios: The impact of granules packing. Chem. Eng. Sci. 58:2857–74. doi:10.1016/S0009-2509(03)00137-4.
  • Shao, H., F. Han, J. Si, J. Zhang, and W. Li. 2022. Inorganic thixotropic gel for controlling coal spontaneous combustion through the prevention of air leakage. Combust. Sci. Technol 1–26. doi:10.1080/00102202.2022.2065202.
  • Shui-Jun, Y., X. Feng-Cheng, J. Bo-Yu, and Z. Peng-Fei. 2012. Influence study of organic and inorganic additive to coal combustion characteristic. Proced. Environ. Sci 12:459–67. doi:10.1016/j.proenv.2012.01.304.
  • Si, L., J. Wei, Y. Xi, H. Wang, Z. Wen, B. Li, and H. Zhang. 2021. The influence of long-time water intrusion on the mineral and pore structure of coal. Fuel 290. doi:10.1016/j.fuel.2020.119848.
  • Slovák, V., and B. Taraba. 2012. Urea and CaCl2 as inhibitors of coal low-temperature oxidation. J. Therm. Anal. Calorim 110:363–67. doi:10.1007/s10973-012-2482-4.
  • Sujanti, W., and D. -K. Zhang. 1999. A laboratory study of spontaneous combustion of coal the influence of inorganic matter and reactor size. Fuel 78:549–56. doi:10.1016/S0016-2361(98)00188-4.
  • Taraba, B., R. Peter, and V. Slovák. 2011. Calorimetric investigation of chemical additives affecting oxidation of coal at low temperatures. Fuel Process. Technol. 92:712–15. doi:10.1016/j.fuproc.2010.12.003.
  • Tian, L., D. Lucas, S. L. Fischer, S. C. LEE, S. K. Hammond, and C. P. Koshland. 2008. Particle and gas emissions from a simulated coal-burning household fire pit. Environ. Sci & Technol 42:2503–08. doi:10.1021/es0716610.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2002. Examination of CO2, CO, and H2O formation during low-temperature oxidation of a bituminous coal. Energy & Fuels 16:586–92. doi:10.1021/ef010152v.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2003a. Analysis of the mechanism of the low-temperature oxidation of coal. Combust. Flame 134:107–17. doi:10.1016/S0010-2180(03)00086-5.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2003b. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Prog. Energ. Combust. 29:487–513. doi:10.1016/S0360-1285(03)00042-X.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2003c. Pathways for production of CO2 and CO in low-temperature oxidation of coal. Energy & Fuels 17:150–58. doi:10.1021/ef020095l.
  • Wang, Q., F. Wang, C. Li, Z. Li, and R. Li. 2021. Fire extinguishing performance and mechanism for several typical dry water extinguishing agents. RSC. Adv 11:9827–36. doi:10.1039/D1RA00253H.
  • Wang, S. J., F. Wu, G. Zhang, P. Zhu, Z. Y. Wang, C. J. Huang, and S. T. Chen. 2014. Research on the combustion characteristics of anthracite and blended coal with composite catalysts. J. Energy Inst. 87:96–101. doi:10.1016/j.joei.2014.03.020.
  • Watanabe, W. S., D. -K. Zhang. 2001. The effect of inherent and added inorganic matter on low-temperature oxidation reaction of coal. Fuel Process. Technol. 74:145–60. doi:10.1016/S0378-3820(01)00237-5.
  • Xi, Z., Z. Shan, M. Li, and X. Wang. 2020. Analysis of coal spontaneous combustion by thermodynamic methods. Combust. Sci. Technol 193:2305–30. doi:10.1080/00102202.2020.1734797.
  • Yuan, S., C. Chang, S. Yan, P. Zhou, X. Qian, M. Yuan, and K. Liu. 2021. A review of fire-extinguishing agent on suppressing lithium-ion batteries fire. J. Energy Chem. 62:262–80. doi:10.1016/j.jechem.2021.03.031.
  • Zhan, J., H. -H. Wang, S. -N. Song, Y. Hu, and J. Li. 2011. Role of an additive in retarding coal oxidation at moderate temperatures. Proc. Combust. Inst. 33:2515–22. doi:10.1016/j.proci.2010.06.046.
  • Zhang, J., and C. Kuenzer. 2007. Thermal surface characteristics of coal fires 1 results of in-situ measurements. J. Appl. Geophys. 63:117–34. doi:10.1016/j.jappgeo.2007.08.002.
  • Zhang, J., C. Kuenzer, A. Tetzlaff, D. Oertel, B. Zhukov, and W. Wagner. 2007. Thermal characteristics of coal fires 2: Results of measurements on simulated coal fires. J. Appl. Geophys. 63:135–47. doi:10.1016/j.jappgeo.2007.08.003.
  • Zhang, Y., R. Li, Y. Wang, X. Wu, J. Wang, L. Tang, and K. Yang. 2021. Experimental study on feasibility of EG gel optimizing mine fire control technology. Combust. Sci. Technol 1–23. doi:10.1080/00102202.2021.2009470.
  • Zheng, C., J. Liu, Z. Liu, M. Xu, and Y. Liu. 2005. Kinetic mechanism studies on reactions of mercury and oxidizing species in coal combustion. Fuel 84:1215–20. doi:10.1016/j.fuel.2004.09.027.
  • Zhong, X., H. Jian, G. Dou, J. Liu, and H. Tan. 2022. Preparation and characterization of a bentonite-based hybrid gel for coal spontaneous combustion prevention. ACS. Omega 7:46536–49. doi:10.1021/acsomega.2c05359.
  • Zou, Y., K. Li, B. Yuan, X. Chen, A. Fan, Y. Sun, S. Shang, G. Chen, C. Huang, H. Dai, et al. 2019. Inspiration from a thermosensitive biomass gel: A novel method to improving the stability of core-shell “dry water” fire extinguishing agent. Powder Technol. 356:383–90. doi:10.1016/j.powtec.2019.08.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.