111
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance Optimization of Hybrid Draft Biomass Cookstove Using CFD

, ORCID Icon &
Received 17 Oct 2022, Accepted 01 Jun 2023, Published online: 08 Jun 2023

References

  • Ansys Inc. 2018. ANSYS 19.2 FLUENT user ’ s guide.
  • Borraz, L., Reyes-Nava J. A., Beltrán A., Moreira-Acosta J., Ibáñez G. 2022. Transient CFD simulations of a biomass plancha-type cookstove using free software. In Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 44(8), 1–18. Berlin Heidelberg: Springer. doi:10.1007/s40430-022-03654-0.
  • Burnham-Slipper, H. 2008. Breeding a better stove : The use of computational fluid dynamics and genetic algorithms to optimise a wood burning stove for eritrea. UK: University of Nottingham.
  • Caubel, J. J., V. H. Rapp, S. S. Chen, and A. J. Gadgil. 2018. Optimization of secondary air injection in a wood-burning cookstove: An experimental study. Environ. Sci. Technol 52 (7):4449–56. doi:10.1021/acs.est.7b05277.
  • Epa Pcia, A. 2014. The Water Boiling Test, version 4.2.3. http://www.cleancookstoves.org/our-work/standards-and-testing/learn-about-testingprotocols/.
  • Frenklach, M. 2002. Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys. 4 (11):2028–37. doi:10.1039/b110045a.
  • Ghiwe, S. S., V. R. Kalamkar, M. P. Kshirsagar, and P. D. Sawarkar. 2022. The influence of stove materials on the combustion performance of a hybrid draft biomass cookstove. Combust. Sci. Technol 1–21. doi:10.1080/00102202.2022.2138710.
  • Ghiwe, S. S., V. R. Kalamkar, S. K. Sharma, and P. D. Sawarkar. 2023. Numerical and experimental study on the performance of a hybrid draft biomass cookstove. Renew. Energy 205 (August 2022):53–65. doi:10.1016/j.renene.2023.01.077.
  • Husain, Z., S. S. Tiwari, A. Kataria, C. S. Mathpati, A. B. Pandit, and J. B. Joshi. 2020. Computational fluid dynamic study of biomass cook stove-part 2: Devolatilization and heterogeneous combustion. Ind. Eng. Chem. Res. 59 (32):14507–21. doi:10.1021/acs.iecr.9b07109.
  • Husain, Z., S. S. Tiwari, A. B. Pandit, and J. B. Joshi. 2019. Computational fluid dynamics study of biomass cook stove - part 1: Hydrodynamics and homogeneous combustion. Ind. Eng. Chem. Res. 59 (9):4161–76. doi:10.1021/acs.iecr.9b03181.
  • Hu, B., B. Yang, and U. O. Koylu. 2003. Soot measurements at the axis of an ethylene/air non-premixed turbulent jet flame. Combust. Flame 134 (1–2):93–106. doi:10.1016/S0010-2180(03)00085-3.
  • IEA. 2021. India energy outlook 2021. India Energy Outlook 2021. doi:10.1787/ec2fd78d-en.
  • IEA. 2022. International energy agency (IEA) World energy outlook 2022. World Energy Outlook Sereies. https://www.iea.org/Reports/World-Energy-Outlook-2022/Executive-Summary.
  • Kalla, S., H. Marcoux, and A. De Champlain. 2015. CFD approach for modeling high and low combustion in a natural draft residential wood log stove. Int. J. Heat Technol. 33 (1):33–38. doi:10.18280/ijht.330105.
  • Kent, J. H., and D. Honnery. 1987. Soot and mixture fraction in turbulent diffusion flames. Combust. Sci. Technol 54 (1–6):383–98. doi:10.1080/00102208708947062.
  • Kohli, S., J. Srivnivasan, and H. S. Mukunda. 1993. Heat transfer to a horizontal disc using a buoyoancy induced jet. Int. J. Heat Mass Tran. 36 (16):4049–66. doi:10.1016/0017-9310(93)90155-Y.
  • Kshirsagar, M. P., and V. R. Kalamkar. 2014. A comprehensive review on biomass cookstoves and a systematic approach for modern cookstove design. Renew. Sust. Energ. Rev. 30:580–603. doi:10.1016/j.rser.2013.10.039.
  • Kshirsagar, M. P., and V. R. Kalamkar. 2015. A mathematical tool for predicting thermal performance of natural draft biomass cookstoves and identification of a new operational parameter. Energy. Elsevier Ltd 93:188–201. doi:10.1016/j.energy.2015.09.015.
  • Kshirsagar, M. P., and V. R. Kalamkar. 2022. Hybrid draft direct-combustion with secondary air jets in cross-flow for reducing CO and PM2.5 emissions in biomass cookstoves. Sustain. Energy Technol. Assess 51:101913. doi:10.1016/j.seta.2021.101913.
  • Kshirsagar, M. P., V. R. Kalamkar, and R. R. Pande. 2020. Multi-response robust design optimization of natural draft biomass cook stove using response surface methodology and desirability function. Biomass Bioenergy 135 (March 2019):105507. doi:10.1016/j.biombioe.2020.105507.
  • Li, J., M. C. Paul, P. L. Younger, I. Watson, M. Hossain, and S. Welch. 2016. Prediction of high-temperature rapid combustion behaviour of woody biomass particles. Fuel 165:205–14. doi:10.1016/j.fuel.2015.10.061.
  • MacCarty, N. A., and K. M. Bryden. 2015. Modeling of household biomass cookstoves: A review. Energy For Sustain. Dev. 26:1–13. doi:10.1016/j.esd.2015.02.001.
  • Magnussen, B. F., and B. H. Hjertager. 1977. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp. (Int.) Combust. 16 (1):719–29. doi:10.1016/S0082-0784(77)80366-4.
  • Mahmoud, S. M., M. C. Paul, P. L. Younger, I. Watson, M. Hossain, and S. Welch. 2018. The effect of exit reynolds number on soot volume fraction in turbulent non-premixed jet flames. Combust. Flame 187:42–51. doi:10.1016/j.combustflame.2017.08.020.
  • Manoj, K., S. Kumar, and S. K. Tyagi. 2013. Design, development and technological advancement in the biomass cookstoves: A review. Renew. Sustain. Energy. Rev 26:265–85. doi:10.1016/j.rser.2013.05.010.
  • Medina, P., J. Núñez, V. M. Ruiz-García, and A. Beltrán. 2021. Experimental and numerical comparison of CO2 mass flow rate emissions, combustion and thermal performance for a biomass plancha-type cookstove. Energy For Sustain. Dev. 63:153–59. doi:10.1016/j.esd.2021.07.001.
  • Miller-Lionberg, D. D. 2011. A fine resolition CFD simulation approach for biomass cookstove developement. Colorado, USA: Colorado State University.
  • Ndindeng, S. A., M. Wopereis, S. Sanyang, and K. Futakuchi. 2019. Evaluation of fan-assisted rice husk fuelled gasifier cookstoves for application in sub-Sahara Africa. Renew. Energy 139:924–35. doi:10.1016/j.renene.2019.02.132.
  • Núñez, J., M. F. Moctezuma-Sánchez, E. M. Fisher, V. M. Berrueta, O. R. Masera, and A. Beltrán. 2020. Natural-draft flow and heat transfer in a plancha-type biomass cookstove. Renew. Energy 146:727–36. doi:10.1016/j.renene.2019.07.007.
  • Nuutinen, K., J. Jokiniemi, O. Sippula, H. Lamberg, J. Sutinen, P. Horttanainen, and J. Tissari. 2014. Effect of air staging on fine particle, dust and gaseous emissions from masonry heaters. Biomass Bioenergy 67:167–78. doi:10.1016/j.biombioe.2014.04.033.
  • Obi, O. F., S. L. Ezeoha, and I. C. Okorie. 2016. Energetic performance of a top-lit updraft (TLUD) cookstove. Renew. Energ. 99:730–37. doi:10.1016/j.renene.2016.07.060.
  • Pande, R. R., V. R. Kalamkar, and M. P. Kshirsagar. 2019. The effect of inlet area ratio on the performance of multi-pot natural draft biomass cookstove. In Proceedings of the national academy of sciences india section A - physical sciences. Springer India. doi:10.1007/s40010-019-00650-3.
  • Pande, R. R., M. P. Kshirsagar, and V. R. Kalamkar. 2018. Experimental and CFD analysis to study the effect of inlet area ratio in a natural draft biomass cookstove. In Environment, development and sustainability, 0123456789. Springer Netherlands. doi:10.1007/s10668-018-0269-x.
  • Pettersson, E., F. Lindmark, M. Öhman, A. Nordin, R. Westerholm, and C. Boman. 2010. Design changes in a fixed-bed pellet combustion device: Effects of temperature and residence time on emission performance. Energy Fuels 24 (2):1333–40. doi:10.1021/ef901023f.
  • Porteiro, J., J. Collazo, D. Patiño, E. Granada, J. C. Moran Gonzalez, and J. L. Míguez. 2009. Numerical modeling of a biomass pellet domestic boiler. Energy Fuels 23 (2):1067–75. doi:10.1021/ef8008458.
  • Pundle, A., B. Sullivan, P. Means, J. D. Posner, and J. C. Kramlich. 2019. Predicting and analyzing the performance of biomass-burning natural draft rocket cookstoves using computational fluid dynamics. Biomass Bioenergy 131 (August):105402. doi:10.1016/j.biombioe.2019.105402.
  • Ravi, M. R., S. Kohli, and A. Ray. 2002. Use of CFD simulation as a design tool for biomass stoves. Energy Sustain. Dev. 6 (2):20–27. doi:10.1016/S0973-0826(08)60309-9.
  • Scharler, R., G. Archan, C. Rakos, L. von Berg, D. Lello, C. Hochenauer, and A. Anca-Couce. 2021. Emission minimization of a top-lit updraft gasifier cookstove based on experiments and detailed CFD analyses. Energy Convers. Manage 247 (September):1–53. doi:10.1016/j.enconman.2021.114755.
  • Sedighi, M., and H. Salarian. 2017. A comprehensive review of technical aspects of biomass cookstoves. Renew. Sust. Energ. Rev. 70 (November 2016):656–65. doi:10.1016/j.rser.2016.11.175.
  • Tabet, F., V. Fichet, and P. Plion. 2016. A comprehensive CFD based model for domestic biomass heating systems. J. Energy Inst. 89 (2):199–214. doi:10.1016/j.joei.2015.02.003.
  • Torvela, T., J. Tissari, O. Sippula, T. Kaivosoja, J. Leskinen, A. Virén, A. Lähde, and J. Jokiniemi. 2014. Effect of wood combustion conditions on the morphology of freshly emitted fine particles. Atmos. Environ. 87:65–76. doi:10.1016/j.atmosenv.2014.01.028.
  • Weerasinghe, W. M. S. R., and U. D. L. Kumara. 2003. CFD approach for modelling of combustion of a semi enclosed cooking stove. 2003 (December):26–28. http://sro.sussex.ac.uk/21599/.
  • World Health Organization. 2021. Setting national voluntary performance targets for cookstoves. https://www.who.int/publications/i/item/9789240023987.
  • World Health Organization. 2022. Household-air-pollution-and-health. https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health.
  • Yang, B., and U. O. Koylu. 2005. Detailed soot field in a turbulent non-premixed ethylene/air flame from laser scattering and extinction experiments. Combust. Flame 141 (1–2):55–65. doi:10.1016/j.combustflame.2004.12.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.