124
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Oxidation of Polycyclic Aromatic Hydrocarbons: Evidence of Similarities in Thermochemical Properties and Reaction Paths

ORCID Icon, &
Pages 3341-3356 | Received 09 May 2023, Accepted 20 May 2023, Published online: 29 Jul 2023

References

  • Austin, A., G. Petersson, M. J. Frisch, J. F. Dobek, G. Scalmani, and K. Throssell. 2012. A density functional with spherical atom dispersion terms. J. Chem. Theory And Comput 8 (12):4989. doi:10.1021/ct300778e.
  • Becke, A. D. 1993. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98 (7):5648–52. doi:10.1063/1.464913.
  • Bhardwaj, O. P., B. Lüers, B. Holderbaum, T. Koerfer, S. Pischinger, and M. Honkanen. 2014. Utilization of HVO fuel properties in a high efficiency combustion system: Part 2: Relationship of soot characteristics with its oxidation behavior in DPF. SAE Int. J. Fuels Lubr 7:979–94. doi:10.4271/2014-01-2846.
  • The European Parliament and the Council of the European Union. 2007. Regulation (EC) No. 715/2007 of the European parliament and of the council. Oj L 171:1–16. 29.6.2007.
  • Fang, H. L., and M. J. Lance. 2004. Influence of soot surface changes on DPF regeneration. SAE Tech. Pap 2053–61. doi:10.4271/2004-01-3043.
  • Gaussian 16, Revision C.01, Frisch, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, et al. 2016. Gaussian.com Expanding the limits of computational chemistry (Online).
  • Huang, C. H., and R. L. Vander Wal. 2016. Partial premixing effects upon soot nanostructure. Combust. Flame 168:403–08. doi:10.1016/j.combustflame.2016.01.006.
  • Kee, R. J., F. M. Rupley, J. A. Miller, M. E. Coltrin, J. F. Grcar, E. Meeks, H. K. Moffat, A. E. Lutz, G. Dixon-Lewis, M. D. Smooke, et al. 2000. CHEMKIN collection, release 3.6; reaction design. San Diego, CA: Inc.
  • Kislov, V. V., A. M. Mebel, and S. H. Lin. 2002. Ab initio and DFT study of the formation mechanisms of polycyclic aromatic hydrocarbons: The phenanthrene synthesis from biphenyl and naphthalene. J Phys Chem A 106 (25):6171–82. doi:10.1021/jp020406t.
  • Kislov, V. V., R. I. Singh, D. E. Edwards, A. M. Mebel, and M. Frenklach. 2015. Rate coefficients and product branching ratios for the oxidation of phenyl and naphthyl radicals: A theoretical RRKM-ME study. Proc. Combust. Inst. 35:1861–69. doi:10.1016/j.proci.2014.06.135.
  • Lay, T. H., L. N. Krasnoperov, C. A. Venanzi, J. W. Bozzelli, and N. V. Shokhirev. 1996. Ab initio study of α-chlorinated ethyl hydroperoxides CH3CH2OOH, CH3CHClOOH, and CH3CCl2OOH: Conformational analysis, internal rotation barriers, vibrational frequencies, and thermodynamic properties. J Phys Chem 100 (20):8240–49. doi:10.1021/jp952976h.
  • Lee, C., W. Yang, and R. G. Parr. 1988. Development of the colic-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37 (2):785–89. doi:10.1103/PhysRevB.37.785.
  • Mebel, A. M., A. Landera, and R. L. Kaiser. 2017. Formation mechanisms of naphthalene and indene: From the interstellar medium to combustion flames. J Phys Chem A 121 (5):901–26. doi:10.1021/acs.jpca.6b09735.
  • Montgomery, J. A., J. W. Ocherski, and G. A. Petersson. 1994. A complete basis set model chemistry. IV. An improved atomic pair natural orbital method. J. Chem. Phys. 101 (7):5900–09. doi:10.1063/1.467306.
  • Morozov, A. N., I. A. Medvedkov, V. N. Azyazov, and A. M. Mebel. 2021. Theoretical study of the phenoxy radical recombination with the O(3 P) atom, phenyl plus molecular oxygen revisited. J Phys Chem A 125 (18):3965–77. doi:10.1021/acs.jpca.1c01545.
  • Pawlyta, M., J. N. Rouzaud, and S. Duber. 2015. Raman microspectroscopy characterization of carbon blacks: Spectral analysis and structural conformation. Carbon 84:479–90. doi:10.1016/j.carbon.2014.12.030.
  • Raj, A., G. R. da Silva, and S. H. Chung. 2012. Reaction mechanism for the free-edge oxidation of soot by O2. Combust. Flame 159 (11):3423–36. doi:10.1016/j.combustflame.2012.06.004.
  • Raj, A., S. Y. Yang, D. Cha, R. Tayouo, and S. H. Chung. 2013. Structural effects on the oxidation of soot particles by O2: Experimental and theoretical study. Combust. Flame 160 (9):1812–26. doi:10.1016/j.combustflame.2013.03.010.
  • Roux, M. V., M. Temprado, J. S. Chickos, and Y. Nagano. 2008. Critically evaluated thermo-chemical properties of polycyclic aromatic hydrocarbons. J. Phys. Chem. Ref. Data 37 (4):1855–996. doi:10.1063/1.2955570.
  • Sebbar, N., H. Bockhorn, and J. W. Bozzelli. 2008a. Thermochemical similarities among three reaction systems: Vinyl + O2 – Phenyl + O2 – Dibenzofuranyl + O2. Combust. Sci. & Tech 180 (5):959–74. doi:10.1080/00102200801894455.
  • Sebbar, N., H. Bockhorn, and J. W. Bozzelli. 2008b. Thermodynamic properties of the species resulting from the phenyl radical with O2 reaction system. Int. J. Chem. Kinet. 40 (9):583–604. doi:10.1002/kin.20311.
  • Sebbar, N., J. W. Bockhorn, and H. Bozzelli. 2011. Thermochemistry and kinetics for 2-Butanone-3yl radical (CH 3 C(=O)CH • CH 3) reactions with O 2. Z. Phys. Chem. 225 (9–10):993–1018. doi:10.1524/zpch.2011.0144.
  • Sebbar, N., J. W. Bockhorn, and H. Bozzelli. 2014. Thermochemistry and kinetics for 2-Butanone-1-yl radical (CH 2 ·C(═O)CH 2 CH 3) reactions with O 2. J. Phys. Chem. A 118 (1):21–37. doi:10.1021/jp408708u.
  • Sebbar, N., J. W. Bozzelli, D. Trimis, and H. Bockhorn. 2019. Thermochemistry and kinetics of the 2-butanone-4-yl CH 3 C(=O)CH 2 CH 2 • + O 2 reaction system. Int. J. Chem. Kinet. 51 (8):541–62. doi:10.1002/kin.21276.
  • Sebbar, N., D. Trimis, and H. Bockhorn. 2022. In revision. Investigation of the naphthalene radical C10H7∙ oxidation: Thermochemistry, kinetics and mechanism. Int.J. Chem. Kinet.
  • Sheng, C. 2002. Department of chemical engineering, chemistry and environmental science. Dissertation., New Jersey Institute of Technology, Newark, NJ 07102.
  • Singh, R. I., A. M. Mebel, and M. Frenklach. 2015. Oxidation of graphene-edge six- and five-member rings by molecular oxygen. J Phys Chem A 119 (28):7528–7547. doi:10.1021/acs.jpca.5b00868.
  • Tokmakov, I. V., G. S. Kim, V. V. Kislov, A. M. Mebel, and M. C. Lin. 2005. The reaction of phenyl radical with molecular oxygen: A G2M study of the potential energy surface. J Phys Chem A 109:6114–27. doi:10.1021/jp051712k.
  • Vander Wal, R. L., and A. J. Tomasek. 2003. Soot oxidation: Dependence upon initial nanostructure. Combust. Flame 134 (1–2):1–9. doi:10.1016/S0010-2180(03)00084-1.
  • Zhao, Y., and D. G. Truhlar. 2008. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120 (1–3):215–41. doi:10.1007/s00214-007-0310-x.
  • Zhao, Y., and D. G. Truhlar. 2011. Applications and validations of the Minnesota density functionals. Chem Phys Lett 502 (1–3):1–13. doi:10.1016/j.cplett.2010.11.060.
  • Zhou, C. W., V. V. Kislov, and A. M. Mebel. 2012. Reaction mechanism of naphthyl radicals with molecular oxygen. 1. Theoretical study of the potential energy surface. J Phys Chem A 116 (6):1571–85. doi:10.1021/jp2119313.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.