127
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Filter-Based Approach for the Measurement of Mass Absorption Coefficient of OC and EC Components in Soot

, , &
Pages 3529-3541 | Received 01 Jun 2023, Accepted 05 Jun 2023, Published online: 23 Jul 2023

References

  • Andreae, M. O., and A. Gelencsér. 2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 6 (10):3131–48. doi:10.5194/acp-6-3131.
  • Ångström, A., and A. Angstrom. 1929. On the atmospheric transmission of sun radiation and on dust in the air. Source: Geografiska. Annaler 11:156. doi:10.2307/519399.
  • Arnott, W. P., K. Hamasha, H. Moosmüller, P. J. Sheridan, and J. A. Ogren. 2005. Towards aerosol light-absorption measurements with a 7-Wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Sci. Technol. 39 (1):17–29. doi:10.1080/027868290901972.
  • Bescond, A., J. Yon, F. X. Ouf, C. Rozé, A. Coppalle, P. Parent, D. Ferry, and C. Laffon. 2016. Soot optical properties determined by analyzing extinction spectra in the visible near-UV: Toward an optical speciation according to constituents and structure. J. Aerosol Sci 101:118–32. doi:10.1016/j.jaerosci.2016.08.001.
  • Bhandari, J., S. China, K. K. Chandrakar, G. Kinney, W. Cantrell, R. A. Shaw, L. R. Mazzoleni, G. Girotto, N. Sharma, K. Gorkowski, et al. 2019. Extensive soot compaction by cloud processing from laboratory and field observations. Sci. Rep 9 (1). doi: 10.1038/s41598-019-48143-y.
  • Birch, M. E., and R. A. Cary. 2007. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Technol. doi:10.1080/02786829608965393.
  • Bocchicchio, S., M. Commodo, L. A. Sgro, M. Chiari, A. D’Anna, and P. Minutolo. 2022. Thermo-optical-transmission OC/EC and raman spectroscopy analyses of flame-generated carbonaceous nanoparticles. Fuel 310:310. doi:10.1016/J.FUEL.2021.122308.
  • Bond, T. C. 2001. Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion. Geophys. Res. Lett 28 (21):4075–78. doi:10.1029/2001GL013652.
  • Bond, T. C., T. L. Anderson, and D. Campbell. 1999. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Sci. Technol. 30 (6):582–600. doi:10.1080/027868299304435.
  • Bond, T. C., and R. W. Bergstrom. 2006. Light absorption by carbonaceousparticles: An investigative review. Aerosol Sci. Technol. 40 (1):27–67. doi:10.1080/02786820500421521.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. Deangelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res.: Atmos. 118(11):5380–552. doi:10.1002/jgrd.50171.
  • Cappa, C. D., D. A. Lack, J. B. Burkholder, and A. R. Ravishankara. 2008. Bias in filter-based aerosol light absorption measurements due to organic aerosol loading: Evidence from laboratory measurements. Aerosol Sci. Technol. 42 (12):1022–32. doi:10.1080/02786820802389285.
  • Cho, C., S. W. Kim, M. Lee, S. Lim, W. Fang, Ö. Gustafsson, A. Andersson, R. J. Park, and P. J. Sheridan. 2019. Observation-based estimates of the mass absorption cross-section of black and brown carbon and their contribution to aerosol light absorption in East Asia. Atmos. Environ. 212 (May):65–74. doi:10.1016/j.atmosenv.2019.05.024.
  • Commodo, M., G. De Falco, A. Bruno, C. Borriello, P. Minutolo, and A. D’Anna. 2015. Physicochemical evolution of nascent soot particles in a laminar premixed flame: From nucleation to early growth. Combust. Flame 162 (10):3854–63. doi:10.1016/j.combustflame.2015.07.022.
  • Conrad, B. M., and M. R. Johnson. 2019. Mass absorption cross-section of flare-generated black carbon: Variability, predictive model, and implications. Carbon 149:760–71. doi:10.1016/j.carbon.2019.04.086.
  • Corbin, J. C., T. J. Johnson, F. Liu, T. A. Sipkens, M. P. Johnson, P. Lobo, and G. J. Smallwood. 2022. Size-dependent mass absorption cross-section of soot particles from various sources. Carbon 192:438–51. doi:10.1016/j.carbon.2022.02.037.
  • De Falco, G., S. Bocchicchio, M. Commodo, P. Minutolo, and A. D’Anna. 2022. Raman spectroscopy of nascent soot oxidation: structural analysis during heating. Front. Energy Res. 10 (June):1–11. doi:10.3389/fenrg.2022.878171.
  • Ess, M. N., and K. Vasilatou. 2019. Characterization of a new MiniCAST with diffusion flame and premixed flame options: generation of particles with high EC content in the size range 30 Nm to 200 Nm. Aerosol Sci. Technol. 53 (1):29–44. doi:10.1080/02786826.2018.1536818.
  • Fuller, K. A. 1995. Scattering and absorption cross sections of compounded spheres III spheres containing arbitrarily located spherical inhomogeneities. J. Opt. Soc. Am. A 12 (5):5. doi:10.1364/josaa.12.000893.
  • Jacobson, M. Z. 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409 (6821):695–97. doi:10.1038/35055518.
  • Johansson, K. O., F. El Gabaly, P. E. Schrader, M. F. Campbell, and H. A. Michelsen. 2017. Evolution of maturity levels of the particle surface and bulk during soot growth and oxidation in a flame. Aerosol Sci. Technol. 51 (12):1333–44. doi:10.1080/02786826.2017.1355047.
  • Kelesidis, G. A., C. A. Bruun, and S. E. Pratsinis. 2021. The impact of organic carbon on soot light absorption. Carbon 172:742–49. Elsevier Ltd. doi:10.1016/j.carbon.2020.10.032.
  • Kennedy, I. M. 2007. The health effects of combustion-generated aerosols. Proceedings of the Combustion Institute. doi:10.1016/j.proci.2006.08.116.
  • Kim, J., H. Bauer, T. Dobovičnik, R. Hitzenberger, D. Lottin, D. Ferry, and A. Petzold. 2015. Assessing optical properties and refractive index of combustion aerosol particles through combined experimental and modeling studies. Aerosol Sci. Technol. 49 (5):340–50. doi:10.1080/02786826.2015.1020996.
  • Kirchstetter, T. W., T. Novakov, and P. V. Hobbs. 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. 109 (D21). doi:10.1029/2004JD004999.
  • Kumar, N. K., J. C. Corbin, E. A. Bruns, D. Massabó, J. G. Slowik, L. Drinovec, G. Močnik, P. Prati, A. Vlachou, U. Baltensperger et al. 2018. Production of particulate brown carbon during atmospheric aging of residential wood-burning emissions. Atmos. Chem. Phys. 18(24):17843–61. doi:10.5194/acp-18-17843-2018.
  • Lewis, K., W. P. Arnott, H. Moosmüller, and C. E. Wold. 2008. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument. J. Geophys. Res.: Atmos 113 (D16). doi:10.1029/2007JD009699.
  • Li, H., G. R. Mcmeeking, and A. A. May. 2020. Development of a new correction algorithm applicable to any filter-based absorption photometer. Atmos. Meas. Tech. 13 (5):2865–86. doi:10.5194/amt-13-2865-2020.
  • Lim, S., S. Lee, T. Ahn, and S. Park. 2019. Measurement of organic carbon content during the growth of soot particles in propane normal and inverse diffusion flames using a multi-wavelength light extinction method. Carbon 149 (August):519–29. doi:10.1016/J.CARBON.2019.04.072.
  • Li, S., Y. Ren, P. Biswas, and S. D. Tse. 2016. Flame aerosol synthesis of nanostructured materials and functional devices: processing, modeling, and diagnostics. Prog. Energ. Combust. 55:1–59. doi:10.1016/j.pecs.2016.04.002.
  • Liu, C., C. E. Chung, Y. Yin, and M. Schnaiter. 2018. The absorption Ångström exponent of black carbon: From numerical aspects. Atmos. Chem. Phys. 18 (9):6259–73. doi:10.5194/acp-18-6259-2018.
  • Liu, C., A. V. Singh, C. Saggese, Q. Tang, D. Chen, K. Wan, M. Vinciguerra, M. Commodo, G. De Falco, P. Minutolo, et al. 2019. Flame-formed carbon nanoparticles exhibit quantum dot behaviors. Proc. Natl. Acad. Sci. U.S.A. 116(26):12692–97. doi:10.1073/pnas.1900205116.
  • Liu, F., J. Yon, A. Fuentes, P. Lobo, G. J. Smallwood, and J. C. Corbin. 2020. Review of recent literature on the light absorption properties of black carbon: Refractive index, mass absorption cross section, and absorption function. Aerosol Sci. Technol. 54 (1):33–51. doi:10.1080/02786826.2019.1676878.
  • Maricq, M. M. 2014. Examining the relationship between black carbon and soot in flames and engine exhaust. Aerosol Sci. Technol. 48 (6):620–29. doi:10.1080/02786826.2014.904961.
  • Michelsen, H. A. 2017. Probing soot formation, chemical and physical evolution, and oxidation: a review of in situ diagnostic techniques and needs. Proc. Combust. Inst. 36 (1):717–35. doi:10.1016/J.PROCI.2016.08.027.
  • Minutolo, P., M. Commodo, and A. D’Anna. 2022. Optical properties of incipient soot. Proc. Combust. Inst. 39 (1):1129–38. doi:10.1016/j.proci.2022.09.019.
  • Minutolo, P., G. Gambi, and A. D’Alessio. 1996. The optical band gap model in the interpretation of the UV-Visible absorption spectra of rich premixed flames. Symp. (Int.) Combust. 26 (1):951–57. doi:10.1016/S0082-0784(96)80307-9.
  • Oberdörster, G., Z. Sharp, V. Atudorei, A. Elder, R. Gelein, W. Kreyling, and C. Cox. 2004. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol 16 (6–7):437–45. doi:10.1080/08958370490439597.
  • Olson, M. R., M. V. Garcia, M. A. Robinson, P. Van Rooy, M. A. Dietenberger, M. Bergin, and J. J. Schauer. 2015. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions. J. Geophys. Res.: Atmos 120 (13):6682–97. doi:10.1002/2014JD022970.Received.
  • Pedata, P., T. Stoeger, R. Zimmermann, A. Peters, G. Oberdörster, and A. D’Anna. 2015. “Are we forgetting the smallest, sub 10 nm combustion generated particles?”. Part Fibre. Toxicol 12 (1). doi:10.1186/s12989-015-0107-3.
  • Petzold, A., J. A. Ogren, M. Fiebig, P. Laj, S.-M. Li, U. Baltensperger, T. Holzer-Popp, S. Kinne, G. Pappalardo, N. Sugimoto, et al. 2013. Recommendations for reporting “Black Carbon” Measurements. Atmos. Chem. Phys. 13 (16):8365–79. doi:10.5194/acp-13-8365-2013.
  • Puri, R., T. F. Richardson, R. J. Santoro, and R. A. Dobbins. 1993. Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame. Combust. Flame 92 (3):320–33. doi:10.1016/0010-2180(93)90043-3.
  • Ramanthan, V., and G. Carmicheal. 2008. Climate change due to BC. Nat. Geosci 1 (4):221–27. doi:10.1038/ngeo156.
  • Richter, H., and J. B. Howard. 2000. Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Prog. Energ. Combust. 26 (4–6):565–608. doi:10.1016/S0360-1285(00)00009-5.
  • Sato, M., J. Hansen, D. Koch, A. Lacis, R. Ruedy, O. Dubovik, B. Holben, M. Chin, and T. Novakov. 2003. Global atmospheric black carbon inferred from AERONET. Proc. Natl. Acad. Sci. U.S.A. 100 (11):6319–24. doi:10.1073/pnas.0731897100.
  • Schnaiter, M., M. Gimmler, I. Llamas, C. Linke, C. Jäger, and H. Mutschke. 2006. Strong spectral dependence of light absorption by organic carbon particles formed by propane combustion. Atmos. Chem. Phys. 6 (10):2981–90. doi:10.5194/acp-6-2981-2006.
  • Schulz, F., M. Commodo, K. Kaiser, G. De Falco, P. Minutolo, G. Meyer, A. D’Anna, and L. Gross. 2019. Insights into incipient soot formation by atomic force microscopy. Proc. Combust. Inst. 37 (1):885–92. doi:10.1016/j.proci.2018.06.100.
  • Sirignano, M., and A. D’Anna. 2013. Coagulation of combustion generated nanoparticles in low and intermediate temperature regimes: An experimental study. Proc. Combust. Inst. 34 (1):1877–84. doi:10.1016/j.proci.2012.06.119.
  • Subramanian, R., C. A. Roden, P. Boparai, and T. C. Bond. 2007. Aerosol science and technology yellow beads and missing particles: Trouble ahead for filter-based absorption measurements yellow beads and missing particles: Trouble ahead for filter-based absorption measurements. Aerosol Sci. Technol. 41 (6):630–37. doi:10.1080/02786820701344589.
  • Tauc, J. 1968. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res Bull 3 (1):37–46. doi:10.1016/0025-5408(68)90023-8.
  • Vitiello, G., G. De Falco, F. Picca, M. Commodo, G. D’Errico, P. Minutolo, and A. D’Anna. 2019. Role of radicals in carbon clustering and soot inception: A combined EPR and raman spectroscopic study. Combust. Flame 205:286–94. doi:10.1016/j.combustflame.2019.04.028.
  • Wang, H. 2011. Formation of nascent soot and other condensed-phase materials in flames. Proceedings of the Combustion Institute. doi:10.1016/j.proci.2010.09.009.
  • Wu, B., K. Xuan, X. Zhang, X. Shen, X. Li, Q. Zhou, X. Cao, H. Zhang, and Z. Yao. 2021. Mass absorption cross-section of black carbon from residential biofuel stoves and diesel trucks based on real-world measurements. Sci. Total Environ. 784:147225. doi:10.1016/j.scitotenv.2021.147225.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.