95
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Inhibition Characteristics of Gel-Based TiO2/OPC/CPAAM Composite Inhibitor to Control Coal Spontaneous Combustion

, , , , , , , & show all
Received 28 Apr 2023, Accepted 18 Jul 2023, Published online: 06 Aug 2023

References

  • Atta, A. M., H. A. Lohedan, A. M. Elsaeed, H. I. AlShafey, and M. H. Wahby. 2017. Epoxy embedded with TiO2 nanogel composites as promising self-healing organic coatings of steel. Prog. In. Org. Coat 105:291–302. doi:10.1016/j.porgcoat.2017.01.009.
  • Cheng, W. M., X. M. Hu, J. Xie, and Y. Y. Zhao. 2017. An intelligent gel designed to control the spontaneous combustion of coal: Fire prevention and extinguishing properties. Fuel 210:826–35. doi:10.1016/j.fuel.2017.09.007.
  • Cui, W., Q. J. Meng, Q. Y. Feng, L. Zhou, Y. Cui, and W. Li. 2019. Occurrence and release of cadmium, chromium, and lead from stone coal combustion. Int. J. Coal Sci. Technol 6 (4):586–94. doi:10.1007/s40789-019-00281-4.
  • Deng, J., Z. J. Bai, X. Yang, C. M. Shu, and L. W. Bin. 2019. Effects of imidazole ionic liquid on macroparameters and microstructure of bituminous coal during low-temperature oxidation. Fuel 246:160–68. doi:10.1016/j.fuel.2019.02.066.
  • Deng, J., Y. Xiao, J. H. Lu, H. Wen, and Y. F. Jin. 2015. Application of composite fly ash gel to extinguish outcrop coal fires in China. Nat. Hazards 79 (2):881–98. doi:10.1007/s11069-015-1881-9.
  • Dou, G. L., J. Liu, Z. W. Jiang, H. D. Jian, and X. X. Zhong. 2022. Preparation and characterization of a lignin based hydrogel inhibitor on coal spontaneous combustion. Fuel 308:122074. doi:10.1016/j.fuel.2021.122074.
  • Fracassetti, D., C. Costa, L. Moulay, and A. Francisco. 2013. Ellagic acid derivatives, ellagitannins, proanthocyanidins and other phenolics, vitamin C and antioxidant capacity of two powder products from camu-camu fruit (myrciaria dubia). Food Chem. 139 (4):578–88. doi:10.1016/j.foodchem.2013.01.121.
  • Gai, H. J., H. Z. Wang, L. Liu, B. Feng, M. Xiao, Y. Tang, X. Qu, H. Song, and T. Huang. 2021. Potassium and iodide codoped mesoporous titanium dioxide for enhancing photocatalytic degradation of phenolic compounds. Chem. Phys. Lett. 767:138367. doi:10.1016/j.cplett.2021.138367.
  • Ghahremani, L., S. Shirkavand, F. Akbari, and N. Sabzikari. 2017. Tensile strength and impact strength of color modified acrylic resin reinforced with titanium dioxide nanoparticles. J. Clini. Experiment. Dentist 9 (5):661–65. doi:10.4317/jced.53620.
  • Hajighasem, A., and K. Kabiri. 2015. Novel crosslinking method for preparation of acrylic thickener microgels through inverse emulsion polymerization. Iran. Polym. J. 24 (12):1049–56. doi:10.1007/s13726-015-0392-6.
  • Huang, Z. A., X. H. Liu, Y. K. Gao, Y. H. Zhang, Z. Y. Li, H. Wang, and X. R. Shi. 2019. Experimental study on the compound system of proanthocyanidin and polyethylene glycol to prevent coal spontaneous combustion. Fuel 254:115610. doi:10.1016/j.fuel.2019.06.018.
  • Huang, Z. A., S. N. Quan, X. M. Hu, Y. H. Zhang, Y. K. Gao, Y. C. Ji, X. Y. Qi, and Y. C. Yin. 2022. Study on the preparation and inhibition mechanism of intumescent nanogel for preventing the spontaneous combustion of coal. Fuel 310:122240. doi:10.1016/j.fuel.2021.122240.
  • Huang, Z. A., G. H. Wang, Y. H. Zhang, Y. C. Yin, X. M. Hu, Y. K. Gao, Y. F. Yang, and H. H. Xin. 2022. Inhibition characteristics of a novel PAM/SA-Ca(OH)2 composite inhibitor to control coal spontaneous combustion. Fuel 314:122750. doi:10.1016/j.fuel.2021.122750.
  • Huang, L., K. P. Yang, Q. Zhao, H. J. Li, J. Y. Wang, and Y. C. Wu. 2022. Corrosion resistance and antibacterial activity of procyanidin B2 as a novel environment-friendly inhibitor for Q235 steel in 1 M HCl solution. Bioelectrochem. 143:107969. doi:10.1016/j.bioelechem.2021.107969.
  • Hu, X. M., W. M. Cheng, and Z. L. Shao. 2015. Novel authigenic gas foaming hydrogels for preventing coal spontaneous combustion. E-Polymers 15 (5):361–68. doi:10.1515/epoly-2015-0156.
  • Li, T. T., X. M. Hu, Q. S. Zhang, Y. Y. Zhao, P. Wang, X. Wang, B. Qin, and W. Lu. 2020. Poly(acrylic acid)-chitosan tannic acid double-network self-healing hydrogel based on ionic coordination. Polym. Advan. Technol 31 (7):1–13. doi:10.1002/pat.4893.
  • Li, K. L., Q. X. Zhang, T. Wang, R. Rong, X. W. Hu, and Y. M. Zhang. 2022. Laboratory investigation of pollutant emissions and PM2.5 toxicity of underground coal fires. Sci. Total Environ. 837:155537. doi:10.1016/j.scitotenv.2022.155537.
  • Li, S. L., G. Zhou, Y. Y. Wang, J. Bin, and Y. L. Qu. 2019. Synthesis and characteristics of fire extinguishing gel with high water absorption for coal mines. Process Saf. Environ. 125:207–18. doi:10.1016/j.psep.2019.03.022.
  • Lu, W., B. L. Guo, G. S. Qi, W. Cheng, and W. Yang. 2020. Experimental study on the effect of preinhibition temperature on the spontaneous combustion of coal based on an MgCl2 solution. Fuel 265:117032. doi:10.1016/j.fuel.2020.117032.
  • Ni, G. H., Z. Li, and H. C. Xie. 2018. The mechanism and relief method of the coal seam water blocking effect (WBE) based on the surfactants. Pow. Technol. 323:60–68. doi:10.1016/j.powtec.2017.09.044.
  • Oliveira, M. L., D. Pinto, B. F. Tutikian, K. da Boit, B. K. Saikia, and F. O. Silva Luis. 2019. Pollution from uncontrolled coal fires: Continuous gaseous emissions and nanoparticles from coal mines. J. Clean. Prod. 215:1140–48. doi:10.1016/j.jclepro.2019.01.169.
  • Onifade, M. 2022. Countermeasures against coal spontaneous combustion: A review. Int. J. Coal Prep. Util. 42 (10):2953–75. doi:10.1080/19392699.2021.1920933.
  • Onifade, M., and B. Genc. 2020. A review of research on spontaneous combustion of coal. Int. J. Min. Sci. Technol. 30 (3):303–11. doi:10.1016/j.ijmst.2020.03.001.
  • Onifade, M., B. Genc, A. R. Gbadamosi, A. Morgan, and T. Ngoepe. 2021. Influence of antioxidants on spontaneous combustion and coal properties. Process Saf. Environ. 148:1019–32. doi:10.1016/j.psep.2021.02.017.
  • Panda, P. K., P. Dash, Y. H. Chang, and J. M. Yang. 2022. Improvement of chitosan water solubility by fumaric acid modification. Mater. Lett. 316:132046. doi:10.1016/j.matlet.2022.132046.
  • Pandey, J., N. Mohalik, R. K. Mishra, A. Khalkho, D. Kumar, and V. K. Singh. 2015. Investigation of the role of fire retardants in preventing spontaneous heating of coal and controlling coal mine fires. Fire Technol. 51 (2):227–45. doi:10.1007/s10694-012-0302-9.
  • Pan, R. K., X. C. Li, H. Z. Li, J. K. Chao, H. L. Jia, and Z. H. Ma. 2022. Study on the effect of composite hydrogel inhibitors on the heat release characteristics of coal oxidation. Fuel 309:122019. doi:10.1016/j.fuel.2021.122019.
  • Ren, W. X., Q. Guo, B. Z. Zuo, and Z. F. Wang. 2016. Design and application of device to add powdered gelling agent to pipeline system for fire prevention in coal mines. J. Loss. Prevent. Process 41:147–53. doi:10.1016/j.jlp.2016.03.013.
  • Ren, X. F., X. M. Hu, D. Xue, Y. S. Li, H. Cheng, W. M. Dong, Y. Y. Zhao, Y. Zhao, L. Xin, and W. Lu. 2019. Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal. J. Hazard. Mater. 371:643–54. doi:10.1016/j.jhazmat.2019.03.041.
  • Shao, Z. L., D. M. Wang, Y. M. Wang, X. Zhong, X. Tang, and X. Hu. 2015. Controlling coal fires using the three-phase foam and water mist techniques in the anjialing open pit mine. Nat. Hazards 75 (2):1833–52. doi:10.1007/s11069-014-1401-3.
  • Shi, X. Q., Y. T. Zhang, X. K. Chen, and Y. B. Zhang. 2021. Effects of thermal boundary conditions on spontaneous combustion of coal under temperature-programmed conditions. Fuel 295:120591. doi:10.1016/j.fuel.2021.120591.
  • Singh, R. V., D. D. Tripathi, and V. K. Singh. 2008. Evaluation of suitable technology for prevention and control of spontaneous heating/fire in coal mines. Arch. Min. Sci. 53 (4):555–64.
  • Song, S., B. T. Qin, H. H. Xin, K. Qin, and C. Kai. 2018. Exploring effect of water immersion on the structure and low-temperature oxidation of coal: A case study of Shendong long flame coal. Fuel 234:732–37. doi:10.1016/j.fuel.2018.07.074.
  • Wang, H. Y., X. Y. Fang, F. Du, B. Tan, L. Zhang, Y. C. Li, and C. F. Xu. 2021. Three-dimensional distribution and oxidation degree analysis of coal gangue dump fire area: A case study. Sci. Total Environ. 772:145606. doi:10.1016/j.scitotenv.2021.145606.
  • Wang, L., Z. Y. Liu, H. Y. Yang, H. T. Li, M. G. Yu, T. He, Z. Luo, and F. Liu. 2021. A novel biomass thermoresponsive konjac glucomannan composite gel developed to control the coal spontaneous combustion: Fire prevention and extinguishing properties. Fuel 306:121757. doi:10.1016/j.fuel.2021.121757.
  • Wang, J., Z. Y. Wu, and J. Y. Wang. 2017. Preparation and properties of fire prevention and intelligent porous gel. J. Eng. Sci. Technol 17:212–16.
  • Wen, H., H. Wang, W. Y. Liu, and X. Cheng. 2020. Comparative study of experimental testing methods for characterization parameters of coal spontaneous combustion. Fuel 275:117880. doi:10.1016/j.fuel.2020.117880.
  • Wu, S. W., X. F. Liu, A. L. Miller, Y. S. Cheng, M. L. Yeh, and L. C. Lu. 2018. Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical crosslinking of disulfide bonds as scaffolds for tissue engineering. Carbohyd. Polym. 192 (15):308–16. doi:10.1016/j.carbpol.2018.03.047.
  • Yang, Y. L., Z. H. Li, L. L. Si, S. S. Hou, Y. B. Zhou, and Q. Q. Qi. 2017. Consolidation grouting technology for fire prevention in mined-out areas of working face with large inclined angle and its application. Fire. Mater. 41 (6):700–15. doi:10.1002/fam.2412.
  • Zhang, Y. T., Y. R. Liu, X. Q. Shi, C. Yang, W. Wang, and Y. Li. 2018. Risk evaluation of coal spontaneous combustion on the basis of auto-ignition temperature. Fuel 233:68–76. doi:10.1016/j.fuel.2018.06.052.
  • Zhao, J. Y., J. Deng, T. Wang, J. Song, Y. Zhang, C. M. Shu, and Q. Zeng. 2019. Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidation stages. Energy 169:587–96. doi:10.1016/j.energy.2018.12.100.
  • Zhou, G., S. L. Li, Q. Z. Meng, L. Sun, and L. Sun. 2022. Synthesis and performance of a new temperature-sensitive and super-absorbent fire prevention hydrogel based on ultrasonic method. Colloid Surface A. 640:128399. doi:10.1016/j.colsurfa.2022.128399.
  • Zhou, G., Q. T. Zhang, Y. Y. Hu, D. H. Gao, S. C. Wang, and B. Sun. 2020. Dust removal effect of negatively-pressured spraying collector for advancing support in fully mechanized coal mining face: Numerical simulation and engineering application. Tunn. Undergr. Sp. Technol 95:103149. doi:10.1016/j.tust.2019.103149.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.