149
Views
0
CrossRef citations to date
0
Altmetric
Research Article

LES Investigation of Kerosene Spray Flame Emission Characteristics in a Staged Combustor

, , , , &
Received 01 May 2023, Accepted 20 Jul 2023, Published online: 03 Aug 2023

References

  • Bauerheim, M., T. Jaravel, L. Esclapez, E. Riber, L. Y. Gicquel, B. Cuenot, M. Cazalens, S. Bourgois, M. Rullaud 2015. Multiphase flow LES study of the fuel split effects on combustion instabilities in an ultra low-NOx annular combustor. Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 56697, 1–13.
  • Boger, M., D. Veynante, H. Boughanem, A. Trouvé. 1998. Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Symposium (International) on Combustion, Colorado, USA, Elsevier, 27, 917–25.
  • Butler, T., and P. O’rourke 1977. A numerical method for two dimensional unsteady reacting flows. Symposium (international) on combustion, Massachusetts, USA, Elsevier, 16, 1503–15.
  • Charlette, F., C. Meneveau, and D. Veynante. 2002. A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: Dynamic formulation. Combust. Flame 131 (1–2):181–97. doi:10.1016/S0010-2180(02)00401-7.
  • Chen, Z., T. Yang, S. Zhang, S. Li, Z. Ren. 2021. Efficient emission modelling in lean premixed flames with pre-tabulated formation characteristics. Fuel 301:121043. doi:10.1016/j.fuel.2021.121043.
  • Cherbański, R., and E. Molga. 2020. CFD simulations of hydrogen deflagration in slow and fast combustion regime. Combust. Theory Modelling 24 (4):589–605. doi:10.1080/13647830.2020.1724336.
  • Colin, O., F. Ducros, D. Veynante, T. Poinsot. 2000. A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12(7):1843–63. doi:10.1063/1.870436.
  • Dagaut, P., and M. Cathonnet. 2006. The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling. Prog. Energ. Combust. 32 (1):48–92. doi:10.1016/j.pecs.2005.10.003.
  • Eggenspieler, G., and S. Menon. 2004. Large-eddy simulation of pollutant emission in a DOE-HAT combustor. J. Propul. Power 20 (6):1076–85. doi:10.2514/1.11427.
  • Felden, A., P. Pepiot, L. Esclapez, E. Riber, B. Cuenot. 2019. Including analytically reduced chemistry (ARC) in CFD applications. Acta Astronaut. 158:444–59. doi:10.1016/j.actaastro.2019.03.035.
  • Foust, M., D. Thomsen, R. Stickles, C. Cooper, W. Dodds. 2012. Development of the GE aviation low emissions TAPS combustor for next generation aircraft engines. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Tennessee, USA, American Institute of Aeronautics and Astronautics, 936.
  • Franzelli, B., E. Riber, and B. Cuenot. 2013. Impact of the chemical description on a Large Eddy Simulation of a lean partially premixed swirled flame. C.R. Mec. 341 (1–2):247–56. doi:10.1016/j.crme.2012.11.007.
  • Fureby, C. 2005. A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion. Proc. Combust. Inst. 30 (1):593–601. doi:10.1016/j.proci.2004.08.068.
  • Guo, S., J. Wang, W. Zhang, B. Lin, Y. Wu, S. Yu, G. Li, Z. Hu, Z. Huang. 2019. Investigation on bluff-body and swirl stabilized flames near lean blowoff with PIV/PLIF measurements and LES modelling. Appl. Therm. Eng. 160:114021. doi:10.1016/j.applthermaleng.2019.114021.
  • Han, X., X. Hui, C. Zhang, Y. Lin, P. He, C. J. Sung. 2017. Combustion instabilities in a lean premixed pre-vaporized combustor at high-pressure high-temperature. Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 50855, 1–10.
  • Howard, C., S. Gupta, A. Abbas, T. A. Langrish, D. F. Fletcher. 2017. Proper orthogonal decomposition (POD) analysis of CFD data for flow in an axisymmetric sudden expansion. Chem. Eng. Res. Des. 123:333–46. doi:10.1016/j.cherd.2017.05.017.
  • Huang, Z., T. Guo, X. Han, J. Mao. 2022. Very Large Eddy Simulation of Lean Premixed Flames to Imposed Inlet Velocity Oscillations. Combust. Sci. Technol 194(14):2933–56. doi:10.1080/00102202.2021.1901280.
  • Kuron, M., Z. Ren, E. R. Hawkes, H. Zhou, H. Kolla, J, H. Chen, T. Lu. 2017. A mixing timescale model for TPDF simulations of turbulent premixed flames. Combust. Flame 177:171–83. doi:10.1016/j.combustflame.2016.12.011.
  • Li, S., H. Zhou, L. Hou, Z. Ren. 2017. An analytic model for the effects of nitrogen dilution and premixing characteristics on NOx formation in turbulent premixed hydrogen flames. Int. J. Hydrog Energy 42(10):7060–70. doi:10.1016/j.ijhydene.2016.12.092.
  • Meraner, C., T. Li, M. Ditaranto, T. Løvås. 2019. Combustion and NOx Emission Characteristics of a Bluff Body Hydrogen Burner. Energy & Fuels 33(5):4598–610. doi:10.1021/acs.energyfuels.9b00313.
  • Mongia, H. 2003. TAPS: A fourth generation propulsion combustor technology for low emissions. AIAA International Air and Space Symposium and Exposition: The Next 100 Years, Ohio, USA, American Institute of Aeronautics and Astronautics, 2657.
  • Nguyen, T. H., J. Park, C. Sin, S. Jung, S. Kim. 2021. Numerical Investigation of the Pressure Effect on the NOx Formation in a Lean-Premixed Gas Turbine Combustor. Energy & Fuels 35(8):6776–84. doi:10.1021/acs.energyfuels.0c02909.
  • Nivarti, G., R. Cant, and S. Hochgreb. 2019. Reconciling turbulent burning velocity with flame surface area in small-scale turbulence. J. Fluid. Mech 858:1–11. doi:10.1017/jfm.2018.841.
  • Pecquery, F., V. Moureau, G. Lartigue, L. Vervisch, A. Roux. 2014. Modelling nitrogen oxide emissions in turbulent flames with air dilution: Application to LES of a non-premixed jet-flame. Combust. Flame 161(2):496–509. doi:10.1016/j.combustflame.2013.09.018.
  • Peters, N. 1999. The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid. Mech 384:107–32. doi:10.1017/S0022112098004212.
  • Rasool, R., N. Chakraborty, and M. Klein. 2021. Algebraic Flame Surface Density Modelling of High Pressure Turbulent Premixed Bunsen Flames. Flow Turbul. Combust. 106 (4):1313–27. doi:10.1007/s10494-020-00128-y.
  • Ren, Z., H. Yang, and T. Lu. 2014. Effects of small-scale turbulence on NOx formation in premixed flame fronts. Fuel 115:241–47. doi:10.1016/j.fuel.2013.06.037.
  • Sjunnesson, A., P. Henrikson, and C. Lofstrom 1992. CARS measurements and visualization of reacting flows in a bluff body stabilized flame. 28th Joint Propulsion Conference and Exhibit (Joint Propulsion Conferences, Tennessee, USA, American Institute of Aeronautics and Astronautics.
  • Tian, T., C. Song, H. Wang, C. Xu, K. Luo, J. Fan 2023. The effects of turbulence on the flame structure and NO formation of ammonia turbulent premixed combustion at various equivalence ratios. Fuel 332:126127. doi:10.1016/j.fuel.2022.126127.
  • Van Oijen, J., and L. De Goey. 2000. Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol 161 (1):113–37. doi:10.1080/00102200008935814.
  • Wabel, T. M. 2017. An experimental investigation of premixed combustion in extreme turbulence. Ph.D. Thesis.
  • Wang, Z., Z. Wang, X. Hui, M. Han, C. Liu, W. Tao. 2022. Effect of confinement on exit temperature distribution of centrally staged combustor. J. Eng Thermophys 43 (1):240–50.
  • Wang, B., C. Zhang, Y. Lin, X. Hui, J. Li 2017. Influence of main swirler vane angle on the ignition performance of TeLESS-II combustor. J. Eng. Gas Turbines Power 139(1):011501. doi:10.1115/1.4034154.
  • Wu, H., P. C. Ma, Y. Lv, M. Ihme. 2017. MVP-Workshop Contribution: Modeling of Volvo bluff body flame experiment. In 55th AIAA Aerospace Sciences Meeting. AIAA SciTech Forum: American Institute of Aeronautics and Astronautics, 1–17.
  • Xiao, J., J. R. Travis, and M. Kuznetsov. 2015. Numerical investigations of heat losses to confinement structures from hydrogen-air turbulent flames in ENACCEF facility. Int. J. Hydrog Energy 40 (38):13106–20. doi:10.1016/j.ijhydene.2015.07.090.
  • Yang, Y., Q. Huang, J. Sun, P. Ma, S. Li 2022. Reducing NOx emission of swirl-stabilized ammonia/methane tubular flames through a fuel-oxidizer mixing strategy. Energy & Fuels 36(4):2277–87. doi:10.1021/acs.energyfuels.1c04004.
  • Yang, T., Y. Yin, H. Zhou, Z. Ren 2021. Review of Lagrangian stochastic models for turbulent combustion. Acta Mech. Sin. 37(10):1467–88. doi:10.1007/s10409-021-01142-7.
  • Yao, T., Y. Pei, B. J. Zhong, S. Som, T. Lu, K. H Luo. 2017. A compact skeletal mechanism for n-dodecane with optimized semi-global low-temperature chemistry for diesel engine simulations. Fuel 191:339–49. doi:10.1016/j.fuel.2016.11.083.
  • Yuen, F. T., and Ö. L. Gülder. 2013. Turbulent premixed flame front dynamics and implications for limits of flamelet hypothesis. Proc. Combust. Inst. 34 (1):1393–400. doi:10.1016/j.proci.2012.06.167.
  • Zhang, H., C. Han, T. Ye, Z. Ren. 2016. Large eddy simulation of turbulent premixed combustion using tabulated detailed chemistry and presumed probability density function. J. Turbulence 17(3):327–55. doi:10.1080/14685248.2015.1096364.
  • Zhang, W., S. Karaca, J. Wang, Z. Huang, J. Van Oijen. 2021. Large eddy simulation of the Cambridge/Sandia stratified flame with flamelet-generated manifolds: Effects of non-unity Lewis numbers and stretch. Combust. Flame 227:106–19. doi:10.1016/j.combustflame.2021.01.004.
  • Zhang, S., Z. Lu, and Y. Yang. 2021. Modeling the displacement speed in the flame surface density method for turbulent premixed flames at high pressures. Phys. Fluids 33 (4):045118. doi:10.1063/5.0045750.
  • Zimont, V. 1979. Theory of turbulent combustion of a homogeneous fuel mixture at high Reynolds numbers. Combust, Explos, shock. Waves 15 (3):305–11. doi:10.1007/BF00785062.
  • Zimont, V., W. Polifke, M. Bettelini, W. Weisenstein. 1998. An efficient computational model for premixed turbulent combustion at high Reynolds numbers based on a turbulent flame speed closure. J. Eng. Gas Turbines Power 120(3):526–32. doi:10.1115/1.2818178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.