113
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ignition of Wildland Fuels Exposed to a Time-Decreasing Incident Heat Flux

, , , , , & show all
Pages 3596-3611 | Received 05 Jun 2023, Accepted 06 Jun 2023, Published online: 08 Aug 2023

References

  • Abram, N. J., B. J. Henley, A. Sen Gupta, T. J. R. Lippmann, H. Clarke, A. J. Dowdy, J. J. Sharples, R. H. Nolan, T. Zhang, M. J. Wooster. 2021. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2(1):1–17. doi:10.1038/s43247-020-00065-8.
  • Bearinger, E. D., J. L. Hodges, F. Yang, C. M. Rippe, and B. Y. Lattimer. 2021. Localized heat transfer from firebrands to surfaces. Fire Saf. J. 120:103037. Fire Safety Science: Proceedings of the 13th International Symposium. doi:10.1016/j.firesaf.2020.103037.
  • Brando, P. M., B. Soares-Filho, L. Rodrigues, A. Assunccao, D. Morton, D. Tuchschneider, E. C. M. Fernandes, M. N. Macedo, U. Oliveira, M. T. Coe. 2020. The gathering firestorm in southern Amazonia. Sc. Adv. 6(2):eaay1632.
  • Chini, M. 1924. Sull’ Integrazione di Alcune Equazioni Differenziali del Primo Ordine. Rendiconti. Istituto. Lombardo 57 (2):506–11.
  • De Beer, J. A., J. A. Alascio, S. I. Stoliarov, and M. J. Gollner. 2023. Analysis of the thermal exposure and ignition propensity of a lignocellulosic building material subjected to a controlled deposition of glowing firebrands. Fire Safety J. 135:103720. doi:10.1016/j.firesaf.2022.103720.
  • Delichatsios, M. A., T. H. Panagiotou, and F. Kiley. 1991. The use of time to ignition data for characterizing the thermal inertia and the minimum (critical) heat flux for ignition or pyrolysis. Combust. Flame 84 (3–4):323–32. doi:10.1016/0010-2180(91)90009-Z.
  • Fateev, V., M. Agafontsev, S. Volkov, and A. Filkov. 2017. Determination of smoldering time and thermal characteristics of firebrands under laboratory conditions. Fire Saf. J. 91:791–799.
  • Fernandez-Pello, C. 2017. Wildland fire spot ignition by sparks and firebrands. Fire Saf. J. 91:2–10. Fire Safety Science: Proceedings of the 12th International Symposium. doi:10.1016/j.firesaf.2017.04.040.
  • Grishin, A. M., V. P. Zima, V. T. Kuznetsov, and A. I. Skorik. 2002. Ignition of combustible forest materials by a radiant energy flux. Combust. Explos. shock Waves 38 (1):24–29.
  • Hakes, R. S., H. Salehizadeh, M. J. Weston-Dawkes, and M. J. Gollner. 2019. Thermal characterization of firebrand piles. Fire Saf. J. 104:34–42.
  • Hernández, N., A. Fuentes and P. Reszka, and A. C. Fernandez-Pello. 2019. Piloted ignition delay times on optically thin PMMA cylinders. Proc. Combust. Inst. 37 (3):3993–4000.
  • Ignacio Rivera, J., F. Ebensperger, F. Valenzuela, L. Escandar, P. Reszka and A. Fuentes. 2022. Understanding the role of fire retardants on the discontinuous ignition of wildland fuels. Proc. Combust. Inst.
  • Janssens, M. 1991. Piloted ignition of wood: A review. Fire. Mater. 15 (4):151–167. doi:10.1002/fam.810150402.
  • Koo, E., P. J. Pagni, D. R. Weise, and J. P. Woycheese. 2010. Firebrands and spotting ignition in large-scale fires. Int. J. Wildland Fire 19 (7):818–843. doi:10.1071/WF07119.
  • Manzello, S. L., S. Suzuki, M.J. Gollner, and A. G. Fernandez-Pello. 2020. Role of firebrand combustion in large outdoor fire spread. Prog. Energ. Combust. Sci. 76:100801.
  • Matt Jolly, W., M. A. Cochrane, P. H. Freeborn, Z. A. Holden, T. J. Brown, G. J. Williamson, and D. M. J. S. Bowman. 2015. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6 (1):1–11.
  • Mendez, A., and M. Farazmand. 2022. Quantifying rare events in spotting: How far do wildfires spread? Fire Saf. J. 132:103630. doi:10.1016/j.firesaf.2022.103630.
  • Mindykowski, P., A. Fuentes, JL. Consalvi, and B. Porterie. 2011. Piloted ignition of wildland fuels. Fire Safety J. 46 (1–2):34–40.
  • Mindykowski, P., M. Jorgensen, S. Svensson, and G. Jomaas. 2019. A simple correlation for monitoring the ignition propensity of wet Nordic spruce wood. Fire Safety J. 107:186–192.
  • Modest, M. (2013). Radiative heat transfer 261–282. Oxford, U.K: Academic Press. 10.1016/B978-0-12-386944-9.50023-6
  • Parot, R., J. I. Rivera, P. Reszka, J. L. Torero, and A. Fuentes. 2022. A simplified analytical model for radiation dominated ignition of solid fuels exposed to multiple non-steady heat fluxes. Combust. Flame 237:111866. doi:10.1016/j.combustflame.2021.111866.
  • Quintiere, J. G. 2006. Fundamentals of fire phenomena. Chichester, England: John Wiley & Sons, Ltd. doi:10.1002/0470091150.
  • Reszka, P., P. Borowiec, T. Steinhaus,J. L. Torero. 2012. A methodology for the estimation of ignition delay times in forest fire modelling. Combust. Flame 159:3652–3657.
  • Reszka, P., J. J. Cruz, J. Valdivia, F. Gonzalez, J. Rivera, C. Carvajal, and A. Fuentes. 2020. Ignition delay times of live and dead Pinus radiata needles. Fire Safety J. 112:102948.
  • Rivera, J., N. Hernandez, J. L. Consalvi, P. Reszka, J. Contreras, A. Fuentes. 2021. Ignition of wildland fuels by idealized firebrands. Fire Saf. J. 120:103036. doi:10.1016/j.firesaf.2020.103036.
  • Simeoni, A., J. C. Thomas, P. Bartoli, P. Borowieck, P. Reszka, F. Colella, P. A. Santoni, and J. L. Torero 2012. Flammability studies for wildland and wildland–urban interface fires applied to pine needles and solid polymers. Fire Safety J. 54:203–217.
  • Spearpoint, M. J., and J. G. Quintiere. 2001. Predicting the piloted ignition of wood in the cone calorimeter using an integral model — effect of species, grain orientation and heat flux. Fire Saf. J. 36 (4):391–415. doi:10.1016/S0379-7112(00)00055-2.
  • Storey, M. A., O. F. Price, J. J. Sharples, and R. A. Bradstock. 2020. Drivers of long-distance spotting during wildfires in south-eastern Australia. Int. J. Wildland Fire 29 (6):459–472. doi:10.1071/WF19124.
  • Suzuki, S., and S. L. Manzello. 2021. Ignition vulnerabilities of combustibles around houses to firebrand showers: Further comparison of experiments. Sust. (Switzerland) 13 (4):2136. doi:10.3390/su13042136.
  • Tao, Z., B. Bathras, B. Kwon, B. Biallas, M. J. Gollner, and R. Yang. 2021. Effect of firebrand size and geometry on heating from a smoldering pile under wind. Fire Saf. J. 120:103031. Fire Safety Science: Proceedings of the 13th International Symposium. doi:10.1016/j.firesaf.2020.103031.
  • Urrutia-Jalabert, R., M. E. González, Á. González‐Reyes, A. Lara, and R. Garreaud. 2018. Climate variability and forest fires in central and south-central Chile. Ecosphere 9 (4):e02171. doi:10.1002/ecs2.2171.
  • Yasin, M. A. H., and N. Bouvet. 2021. Thermal dynamics of deposited firebrands using phosphor thermometry. Proc. Combust. Inst. 38 (3):4757–65.
  • Zak, C., J. Urban, V. Tran, and C. Fernandez-Pello. 2014. Flaming ignition behavior of hot steel and aluminum spheres landing in cellulose fuel beds. Fire Saf. Sci. 11:1368–1378.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.