602
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Low Temperature Heat Release and ϕ-Sensitivity Characteristics of Iso-Octane/Air Mixtures

, & ORCID Icon
Received 02 May 2023, Accepted 27 Jul 2023, Published online: 05 Sep 2023

References

  • Alemahdi, N., A. García, E. Boufaim, G. Aferiat, and M. Tunér. 2022. Development of an empirical test method to quantify the ϕ-sensitivity of liquid fuels. Energy Convers. Manage. 254:115257. ISSN: 0196- 8904. https://www.sciencedirect.com/science/article/pii/S019689042200053X. doi:10.1016/j.enconman.2022.115257.
  • Alemahdi, N., A. García, and M. Tunér. 2022. Understanding the effect of Intake temperature on the ϕ-sensitivity of toluene-ethanol reference fuels and neat ethanol. Int. J. Engine Res. (0):14680874221134147. doi:10.1177/14680874221134147.
  • Bajwa, A. U., F. C. P. Leach, and M. H. Davy. 2023. Prospects of controlled auto-ignition based thermal propulsion units for modern gasoline vehicles. Energies 16 (9):3887. ISSN: 1996-1073. doi: 10.3390/en16093887.
  • Borgqvist, P., P. Tunestal, and B. Johansson. 2013. Comparison of Negative Valve Overlap (NVO) and Rebreathing valve strategies on a gasoline PPC engine at low load and idle operating conditions. SAE Int. J. Engines 6 (1):366–78. ISSN: 19463936, 19463944. Accessed 11 7, 2022. http://www.jstor.org/stable/26277624.
  • Bresenham, D., J. Reisel, and K. Neusen. 1998. Spindt air-fuel ratio method generalization for oxygenated fuels. Sae Trans. 107:2154–71. ISSN: 0096736X, ISSN: 0096736X. Accessed 09 22, 2022. http://www.jstor.org/stable/44736682.
  • Collin, R., J. Nygren, M. Richter, M. Aldén, L. Hildingsson, and B. Johansson. 2003. Simultaneous OH- and Formaldehyde-LIF measurements in an HCCI engine. Sae Trans. 112:2479–86. ISSN: 0096736X, ISSN: 0096736X. Accessed 12 31, 2022. http://www.jstor.org/stable/44742465.
  • Dec, J. E., W. Hwang, and M. Sjöberg. 2006. An investigation of Ther- mal stratification in HCCI engines using chemiluminescence imaging. Sae Trans. 115:759–76. ISSN: 0096736X, 25771531. Accessed 12 31, 2022. http://www.jstor.org/stable/44687346.
  • Dec, J. E., and M. Sjöberg. 2004. Isolating the effects of fuel chemistry on combustion phasing in an HCCI engine and the potential of fuel stratification for ignition control. Sae Trans. 113:239–57. ISSN: 0096736X, 25771531. Accessed 10 26, 2022. http://www.jstor.org/stable/44740754.
  • Dec, J. E., Y. Yang, and N. Dronniou. 2011. Boosted HCCI – controlling pressure-rise rates for performance improvements using partial fuel stratification with conventional gasoline. SAE Int. J. Engines. 4(1):1169–89. ISSN: 19463936, 19463944. Accessed 12 31, 2022. http://www.jstor.org/stable/26278213.
  • DelVescovo, D. A., D. A. Splitter, J. P. Szybist, and G. S. Jatana. 2020. Modeling pre-spark heat release and low temperature chemistry of iso- octane in a boosted spark-ignition engine. Combust. Flame 212:39–52. ISSN: 0010-2180. https://www.sciencedirect.com/science/article/pii/S0010218019304651. doi:10.1016/j.combustflame.2019.10.009.
  • Golzari, R., H. Zhao, J. Hall, M. Bassett, J. Williams, and R. Pearson. 2021. Impact of intake port injection of water on boosted downsized gasoline direct injection engine combustion, efficiency and emissions. Int. J. Engine Res. 22 (1):295–315. doi:10.1177/1468087419832791.
  • Hu, Z., J. Zhang, M. Sjöberg, and W. Zeng. 2020. The use of partial fuel stratification to enable stable ultra-lean deflagration-based Spark-Ignition engine operation with controlled end-gas autoignition of gasoline and E85. Int. J. Engine Res. 21 (9):1678–95. doi:10.1177/1468087419889702.
  • Iijima, A., M. Tanabe, K. Yoshida, H. Shoji, N. Itoh, A. Terashima, and T. Tojo. 2013. Visualization and spectroscopic measurement of knocking combustion accompanied by cylinder pressure oscillations in an HCCI engine. SAE Int. J. Engines 6 (4):2150–63. ISSN: 19463936, 19463944. Accessed 11 4, 2022. http://www.jstor.org/stable/26272341.
  • Kalghatgi, G. Oct. 2013. Fuel/Engine Interactions. SAE International. doi:10.4271/R-409.
  • Kalghatgi, G., P. Risberg, and H.-E. Ångstrom. May, 2003. “A method of defining ignition quality of fuels in HCCI engines”. In: 2003 JSAE/SAE International Spring Fuels and Lubricants Meeting. SAE International. doi:10.4271/2003-01-1816.
  • Kalghatgi, G., P. Risberg, and H.-E. Ångström. Jan, 2007. Partially pre-mixed auto-ignition of gasoline to attain low smoke and low NOx at high load in a compression ignition engine and comparison with a diesel fuel. 2007 Fuels and Emissions Conference. SAE International. doi:10.4271/2007-01-0006.
  • Lang, O., W. Salber, J. Hahn, S. Pischinger, K. Hortmann, and C. Bücker. 2005. Thermodynamical and mechanical approach towards a variable valve train for the controlled auto ignition combustion process. Sae Trans. 114: 722–34. ISSN: 0096736X, 25771531 Accessed 11 7, 2022. http://www.jstor.org/stable/44722038.
  • Leach, F. C. P., M. H. Davy, and B. Terry. 2021. Combustion and emissions from cerium oxide nanoparticle dosed diesel fuel in a high speed diesel research engine under low temperature combustion (LTC) conditions. Fuel 288:119636. ISSN: 0016-2361 https://www.sciencedirect.com/science/article/pii/S0016236120326326. doi:10.1016/j.fuel.2020.119636.
  • Leppard, W. R. Oct, 1990. The chemical origin of fuel octane sensitivity. International Fuels and Lubricants Meeting and Exposition. SAE International. doi:10.4271/902137.
  • Liu, F., M. Z. Akram, and H. Wu. 2020. Hydrogen effect on lean flammability limits and burning characteristics of an isooctane–air mixture. Fuel 266:117144. ISSN: 0016-2361. https://www.sciencedirect.com/science/article/pii/S0016236120301393. doi:10.1016/j.fuel.2020.117144.
  • Olesky, L. M., J. B. Martz, G. A. Lavoie, J. Vavra, D. N. Assanis, and A. Babajimopoulos. 2013. The effects of spark timing, unburned gas temperature, and negative valve overlap on the rates of stoichiometric spark assisted compression ignition combustion. Appl. Energ. 105:407–17. ISSN: 0306-2619. https://www.sciencedirect.com/science/article/pii/S0306261913000470. doi:10.1016/j.apenergy.2013.01.038.
  • Pan, J., P. Zhao, C. K. Law, and H. Wei. 2016. A predictive Liven- good–Wu correlation for two-stage ignition. Int. J. Engine Res. 17 (8):825–35. doi:10.1177/1468087415619516.
  • Papaioannou, N., F. C. P. Leach, M. H. Davy, A. Weall, and B. Cooper. 2019. Evaluation of exhaust gas recirculation techniques on a high-speed direct injection diesel engine using first law analysis. P. I. Mech. Eng. 233 (3):710–26. doi:10.1177/0954407017749110.
  • Pintor, D. L., J. E. Dec, and G. R. Gentz. 2019. Φ-sensitivity for LTGC engines: Understanding the fundamentals and tailoring fuel blends to maximize this property. SAE Technical Paper. ISSN: 2019-01-0961. https://www.osti.gov/servlets/purl/1576882.
  • Saisirirat, P., F. Foucher, S. Chanchaona, and C. Mounaïm-Rousselle. Sept. 2009. Effects of Ethanol, n-Butanol — n-Heptane Blended on Low Temperature Heat Release and HRR Phasing in Diesel-HCCI. 9th International Conference on Engines and Vehicles. Consiglio Nazionale delle Ricerche. doi:10.4271/2009-24-0094.
  • Senecal, K., and F. C. P. Leach. June, 2021. Racing toward zero: The untold story of driving green. SAE International.
  • Shahanaghi, A., S. Karimkashi, O. Kaario, V. Vuorinen, T. Sarjovaara, and R. Tripathi. 2022. Temperature stratification induced ignition regimes for gasoline surrogates at engine-relevant conditions. Combust. Sci. Technol (0):1–41. doi:10.1080/00102202.2022.2124511.
  • Shibata, G., K. Oyama, T. Urushihara, and T. Nakano. 2005. Correlation of low temperature heat release with fuel composition and HCCI engine combustion. SAE Technical Paper. ISSN: 0148-7191. doi:10.4271/2005-01-0138.
  • Sjöberg, M., and J. E. Dec. 2006. Smoothing HCCI heat-release rates using partial fuel stratification with two-stage ignition fuels. Sae Trans. 115:318–34. ISSN: 0096736X, ISSN: 0096736X Accessed 10 26 2022. http://www.jstor.org/stable/44687308.
  • Sjöberg, M., J. E. Dec, A. Babajimopoulos, and D. Assanis. 2004. Comparing enhanced natural thermal stratification against retarded combustion phasing for smoothing of HCCI heat-release rates. Sae Trans. 113:1557–75. ISSN: 0096736X, 25771531 Accessed 10 26, 2022. http://www.jstor.org/stable/44723614.
  • Splitter, D. A., A. Gilliam, J. Szybist, and J. Ghandhi. 2019. Effects of pre-spark heat release on engine knock limit. Proc. Combust. Inst. 37 (4):4893–900. ISSN: 1540-7489. doi:10.1016/j.proci.2018.05.145.
  • Szybist, J. P., and D. A. Splitter. 2017. Pressure and temperature effects on fuels with varying octane sensitivity at high load in SI engines. Combust. Flame 177:49–66. ISSN: 0010-2180. doi:10.1016/j.combustflame.2016.12.002.
  • Tao, M., P. Zhao, J. P. Szybist, P. Lynch, and H. Ge. 2019. Insights into engine autoignition: Combining engine thermodynamic trajectory and fuel ignition delay iso-contour. Combust. Flame 200:207–18. ISSN: 0010-2180 https://www.sciencedirect.com/science/article/pii/S0010218018305091. doi:10.1016/j.combustflame.2018.11.025.
  • Waqas, M. U., A. Hoth, C. P. Kolodziej, T. Rockstroh, J. Pulpeiro Gonzalez, and B. Johansson. 2019. Detection of low temperature heat release (LTHR) in the standard Cooperative Fuel Research (CFR) engine in both SI and HCCI combustion modes. Fuel 256:115745. ISSN: 0016-2361 https://www.sciencedirect.com/science/article/pii/S001623611931097X. doi:10.1016/j.fuel.2019.115745.
  • White, S., A. U. Bajwa, and F. C. P. Leach. 2023. Isolated low temperature heat release in spark ignition engines. SAE Int. J. Adv. Curr. Pract. Mobility. doi:10.4271/2023-01-0235.
  • Wu, Y., P. Pal, S. Som, and T. Lu. May, 2017. A skeletal chemical kinetic mechanism for gasoline and gasoline/ethanol blend surrogates for engine CFD applications. 10th International Conference on Chemical Kinetics, University of Illinois at Chicago.
  • Yang, Y., J. E. Dec, N. Dronniou, and M. Sjöberg. 2011. Tailoring HCCI heat-release rates with partial fuel stratification: Comparison of two-stage and single-stage-ignition fuels. Proc. Combust. Inst. 33 (2):3047–55. ISSN: 1540-7489. https://www.sciencedirect.com/science/article/pii/S1540748910001999. doi:10.1016/j.proci.2010.06.114.
  • Zhao, P., and C. K. Law. 2013. The role of global and detailed kinetics in the first-stage ignition delay in NTC-affected phenomena. Combust. Flame. 160 (11):2352–58. ISSN: 0010-2180 https://www.sciencedirect.com/science/article/pii/S0010218013002241. doi:10.1016/j.combustflame.2013.06.009.