77
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of Acoustic Pressure Oscillations on Burning Rate Augmentation of Composite Solid Propellants at Different Initial Grain Temperatures

ORCID Icon &
Received 20 Mar 2023, Accepted 10 Aug 2023, Published online: 22 Aug 2023

References

  • Ananthkrishnan, N., S. Deo, and F. E. C. Culick. 2005. Reduced-order modeling and dynamics of nonlinear acoustic waves in a combustion chamber. Combust. Sci. Technol. 177 (2):221–48. doi:10.1080/00102200590900219.
  • Beckstead, M. W. 1981. A model for solid propellant combustion. Sym. (Int.) Combust. 18 (1):175–85. doi:10.1016/S0082-0784(81)80022-7.
  • Beckstead, M. W., R. L. Derr, and C. F. Price. 1970. A model of composite solid-propellant combustion based on multiple flames. AIAA J. 8 (12):2200–07. doi:10.2514/3.6087.
  • Beckstead, M. W., R. L. Derr, and C. F. Price. 1971. The combustion of solid monopropellants and composite propellants. Sym. (Int.) Combust. 13 (1):1047–56. doi:10.1016/S0082-0784(71)80103-0.
  • Beckstead, M. W., K. Puduppakkam, P. Thakre, and V. Yang. 2007. Modeling of combustion and ignition of solid-propellant ingredients. Progress Ener. Combust. Sci 33 (6):497–551. doi:10.1016/j.pecs.2007.02.003.
  • Beiter, C. A., and E. W. Price. 1998. Leading-edge flame detachment: effect on pressure-coupled combustion response. J. Propul. Power 14 (2):160–65. doi:10.2514/2.5281.
  • Blomshield, F. S., H. B. Mathes, J. E. Crump, C. A. Beiter, and M. W. Beckstead. 1997. Nonlinear stability testing of full-scale tactical motors. J. Prop. Power 13 (3):356–66. doi:10.2514/2.5192.
  • Cantrell, R. H., and R. W. Hart. 1964. Interaction between sound and flow in acoustic cavities: Mass, momentum and energy considerations. J. Acoust. Soc. Amer. 36 (4):697–706. doi:10.1121/1.1919047.
  • Coates, R. L., and M. D. Horton. 1974. Further considerations on the interaction of sound and flow in rocket motors and t-burners. Combust. Sci. Technol. 9 (3–4):95–102. doi:10.1080/00102207408960343.
  • Coates, R. L., M. D. Horton, and N. W. Ryan. 1964. T-burner method of determining the acoustic admittance of burning propellants. AIAA J. 2 (6):1119–22. doi:10.2514/3.2477.
  • Cohen, N. S. 1980. Review of composite propellant burn rate modeling. AIAA J. 18 (3):277–93. doi:10.2514/3.50761.
  • Cohen, N. S., and D. A. Flanigan. 1985. Mechanisms and models of solid-propellant burn rate temperature sensitivity - a review. AIAA J. 23 (10):1538–47. doi:10.2514/3.9121.
  • Crump, J. E., and E. W. Price. 1960. ‘Catastrophic’ changes in burning rate of solid propellants during combustion instability. ARS J. 30 (7):705–07. doi:10.2514/8.5190.
  • Crump, J. E., and E. W. Price. 1964. Effect of acoustic environment on the burning rate of solid propellants. AIAA J. 2 (7):1274–78. doi:10.2514/3.2532.
  • Culick, F. E. C. 1968. A review of calculations for unsteady burning of a solid propellant. AIAA J. 6 (12):2241–55. doi:10.2514/3.4980.
  • Denison, M. R., and E. Baum. 1961. A simplified model of unstable burning in solid propellants. ARS J. 31 (8):1112–22. doi:10.2514/8.5727.
  • Deur, J. M., and E. W. Price 1987. A simple model for dynamic flame response. AIAA/ASME/SAE/ASEE 23rdJoint Propulsion Conference, San Diego, California, Jun-Jul 2-29. doi: 10.2514/6.1987-1875
  • Elias, I., H. Cheung, and N. S. Cohen. 1965. Acceleration of burning rate of composite propellants by sound waves. AIAA J. 3 (6):1167–68. doi:10.2514/3.3083.
  • Flandro, G. A., S. R. Fischbach, and J. Majdalani. 2007. Nonlinear rocket motor stability prediction: Limit amplitude, triggering, and mean pressure shift. Phys. Fluids 19(9): doi:10.1063/1.2746042. Paper No. 094101.
  • Ganesan, S., and S. R. Chakravarthy. 2022a. Effect of initial grain temperature on combustion response of composite solid propellants in T-burner. Combust. Sci. Technol. Article in Press, 1–13. doi:10.1080/00102202.2022.2121162.
  • Ganesan, S., and S. R. Chakravarthy. 2022b. Methods of analysis of T-burner experimental data. Int. J. Ener. Mat. Chem. Prop. 21 (1):1–20. doi:10.1615/IntJEnergeticMaterialsChemProp.2021038970.
  • Ganesan, S., S. R. Chakravarthy, and B. S. Subhash Chandran. 2023. M novel method to analyze the self-excited and pulsed T-burner experimental data at wide pressure and frequency ranges. Int. J. Ener. Mat. Chem. Prop. 22 (1):77–92. doi:10.1615/IntJEnergeticMaterialsChemProp.2023046469.
  • Greatrix, D. R. 1995. Acceleration-based combustion augmentation modelling for non-cylindrical grain solid rocket motors. 31stAIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Diego. CA. USA, July 10-12. AIAA Paper No. 95-2876. doi:10.2514/6.1995-2876
  • Hart, R. W., and R. H. Cantrell. 1963. Amplification and attenuation of sound by burning propellants. AIAA J. 1 (2):398–404. doi:10.2514/3.1545.
  • Hart, R. W., and F. T. McClure. 1959. Combustion instability: Acoustic interaction with a burning propellant surface. J. Chem. Phys. 30 (6):1501–14. doi:10.1063/1.1730226.
  • Horton, M. D. 1962. Acoustic admittance of a burning solid propellant surface. ARS J. 32 (4):644–47. doi:10.2514/8.6087.
  • Horton, M. D. 1964. Use of the one-dimensional T-burner to study oscillatory combustion. AIAA J. 2 (6):1112–18. doi:10.2514/3.2481.
  • Kathiravan, B., R. Rajak, C. Senthilkumar, and K. Jayaraman. 2019. Oscillatory pressure effect on mean burning rates of solid propellant combustion at low frequency conditions. Prop. Expl. Pyr. 44 (3):369–78. doi:10.1002/prep.201800272.
  • Kathiravan, B., C. Senthilkumar, R. Rajak, and K. Jayaraman. 2020. Mean burning rate variation in composite propellant combustion due to longitudinal acoustic oscillations. J. Prop. Power 36 (4):604–16. doi:10.2514/1.B37533.
  • Kathiravan, B., C. Senthilkumar, R. Rajak, and K. Jayaraman. 2021. Acoustic pressure oscillation effects on mean burning rates of plateau propellants. Combust. Flame 226:69–86. doi:10.1016/j.combustflame.2020.11.018.
  • Li, W., D. Zhao, L. Zhang, and X. Chen. 2022. Proper orthogonal and dynamic mode decomposition analyses of nonlinear combustion instabilities in a solid-fuel ramjet combustor. Thermal. Sci. Eng. Prog. 27 (November 2021):101147. Paper No. 101147. doi:10.1016/j.tsep.2021.101147.
  • Malhotra, S., and G. A. Flandro 1997. On the origin of the DC shift. 33rd Joint Propulsion Conference and Exhibit. July 06-09, Seatlle, WA. USA. doi:10.2514/6.1997-3249
  • McClure, F. T., R. W. Hart, and R. H. Cantrell. 1963. Interaction between sound and flow: Stability of T-burners. AIAA J. 1 (3):586–90. doi:10.2514/3.54846.
  • Perry, E. H. 1970. Investigations of the T-burner and its role in combustion instability studies. Ph.D. diss., California Institute of Technology. doi: 10.7907/J91E-7262
  • Price, E. W., and H. B. Mathes. 1974. Pulsed end burning T-burner. United States Patent (3788126). https://patents.google.com/patent/US3788126A/en.
  • Price, E. W., and J. W. Sofferis. 1958. Combustion instability in solid rocket motors. J. Jet Prop. 28 (3):190–92. doi:10.2514/8.7271.
  • Rajak, R., S. R. Chakravarthy, and S. Ganesan. 2021. Measurement of admittance and acoustic augmentation of burning rate of composite solid propellants using laser doppler velocimetry. Proc. Combust. Instit. 38 (3):4391–99. doi:10.1016/j.proci.2020.06.384.
  • Rezaiguia, H., P. Liu, and T. Yang. 2017. Flame response of solid propellant AP/Al/HTPB to a longitudinal acoustic wave. Int. J. Spray & Combust. Dyn. 9 (4):241–59. doi:10.1177/1756827717695830.
  • Spurling, A. 2013. Effects of initial bulk temperatures on a propellant’s pressure-coupled response. Int. J. Ener. Mat. & Chem. Prop. 12 (5):371–84. doi:10.1615/IntJEnergeticMaterialsChemProp.2013005601.
  • Sujith, R. I., G. A. Waldherr, and B. T. Zinn. 1995. An exact solution for one-dimensional acoustic fields in ducts with an axial temperature gradient. J. Sound Vib. 184 (3):389–402. doi:10.1006/jsvi.1995.0323.
  • Summerfield, M. 1959. Control of solid propellant burning rates by acoustic energy. ARS J. 29 (10):791–92. doi:10.2514/8.4908.
  • Tyagi, M., N. Jamadar, and S. R. Chakravarthy. 2007. Oscillatory response of an idealized two-dimensional diffusion flame: Analytical and numerical study. Combust. Flame 149 (3):271–85. doi:10.1016/j.combustflame.2006.12.020.
  • Varunkumar, S., M. Zaved, and H. S. Mukunda. 2016. A novel approach to composite propellant combustion modeling with a new heterogeneous quasi one-dimensional (HeQu1-D) framework. Combust. Flame 173:411–24. doi:10.1016/j.combustflame.2016.07.031.
  • Woodward Waesche, R. H., and M. Summerfield 1965. Solid propellant combustion instability: Oscillatory burning of solid rocket propellants. AFOSR Report No.66-0937. Princeton University.
  • Zhao, D. 2023. System identification and impulse response of a methane-fuelled swirling thermoacoustic combustor. Thermal. Sci. Eng. Prog. 37 (December 2022):101575. Paper No. 101575. doi:10.1016/j.tsep.2022.101575.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.