100
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Spray Flame Characterization of a Dual Injector for Compact Combustion Systems

, &
Received 13 Jun 2023, Accepted 14 Aug 2023, Published online: 28 Aug 2023

References

  • Alsulami, R. A., M. Sharma, B. Windell, and B. Windom. 2023. Experimental study on the effect of liquid loading on n-heptane spray jet flame stability. Exp. Thermal. Fluid Sci. 147:110953. doi:10.1016/j.expthermflusci.2023.110953.
  • Alsulami, R., B. Windell, S. Nates, W. Wang, S. Won, and B. Windom. 2020. Investigating the role of atomization on flame stability of liquid fuels in an annular spray burner. Fuel 265:116945. doi:10.1016/j.fuel.2019.116945.
  • Balachandar, S., and J. K. Eaton. 2010. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42 (1):111–33. doi:10.1146/annurev.fluid.010908.165243.
  • Birouk, M., and I. Gökalp. 2006. Current status of droplet evaporation in turbulent flows. Prog. Energ. Combust. Sci. 32 (4):408–23. doi:10.1016/j.pecs.2006.05.001.
  • Blessing, M., G. König, C. Krüger, U. Michels, and V. Schwarz. 2003. Analysis of flow and cavitation phenomena in diesel injection nozzles and its effects on spray and mixture formation. Sae Transactions 112:1694–706.
  • Boot, M. D., M. Tian, E. J. M. Hensen, and S. M. Sarathy. 2017. Impact of fuel molecular structure on auto-ignition behavior – design rules for future high performance gasolines. Prog. Energ. Combust. Sci. 60:1–25. doi:10.1016/j.pecs.2016.12.001.
  • Cernansky, N. P. 1976. Sampling and measuring for NO and NO2 in combustion systems. AIAA 14:70–139.
  • Chaussonnet, G., S. Gepperth, S. Holz, R. Koch, and H. J. Bauer. 2020. Influence of the ambient pressure on the liquid accumulation and on the primary spray in prefilming airblast atomization. Int. J. Multiphase Flow 125:103229. doi:10.1016/j.ijmultiphaseflow.2020.103229.
  • Chong, C. T., and S. Hochgreb. 2015. Effect of atomizing air flow on spray atomization of an internal-mix twin-fluid atomizer. Atom. Sprays 25 (8):657–73. doi:10.1615/AtomizSpr.2015011361.
  • Ciani, A., M. R. Bothien, B. Bunkute, J. P. Wood, and G. Früchtel. 2019. Superior fuel and operational flexibility of sequential combustion in Ansaldo Energia gas turbines. J. Glob. Power Propuls. Soc. 3:630–38. doi:10.33737/jgpps/110717.
  • Dafsari, R. A., H. J. Lee, J. Han, and J. Lee. 2019. Evaluation of the atomization characteristics of aviation fuels with different viscosities using a pressure swirl atomizer. Int. J. Heat Mass. Transf. 145:118704. doi:10.1016/j.ijheatmasstransfer.2019.118704.
  • Derudi, M., and R. Rota. 2019. 110th anniversary MILD combustion of liquid hydrocarbon–alcohol blends. Ind. Eng. Chem. Res. 58 (32):15061–68. doi:10.1021/acs.iecr.9b02374.
  • Dhivyaraja, K., D. Gaddes, E. Freeman, S. Tadigadapa, and M. V. Panchagnula. 2019. Dynamical similarity and universality of drop size and velocity spectra in sprays. J Fluid Mech 860:510–43. doi:10.1017/jfm.2018.893.
  • Enagi, I. I., K. A. Al-Attab, and Z. A. Zainal. 2018. Liquid biofuels utilization for gas turbines: a review. Renew. Sust. Energ. Rev. 90:43–55. doi:10.1016/j.rser.2018.03.006.
  • Enderle, B., F. Grimm, B. Rauch, M. Aigner, and G. Chaussonnet, 2018. Derivation and numerical study of spray boundary conditions for a pressure swirl atomizer issuing into co-flowing air. Proc. Glob. Power Propul. Soc. Montreal, May 7 - 9, GPPS–NA–2018–0016.
  • Gimeno, J., P. Martí-Aldaraví, M. Carreres, and S. Cardona. 2021. Experimental investigation of the lift-off height and soot formation of a spray flame for different co-flow conditions and fuels. Combust. Flame 223:111589. doi:10.1016/j.combustflame.2021.111589.
  • Gonzalez-Salazar, M. A., T. Kirsten, and L. Prchlik. 2018. Review of the operational flexibility and emissions of gas- and coal-fired power plants in a future with growing renewables. Renew. Sust. Energ. Rev. 82:1497–513. doi:10.1016/j.rser.2017.05.278.
  • Gupta, K. K., A. Rehman, and R. M. Sarviya. 2010. Bio-fuels for the gas turbine: a review. Renew. Sust. Energ. Rev. 14 (9):2946–55. doi:10.1016/j.rser.2010.07.025.
  • Hall, J., and E. Petersen. 2006. An optimized kinetics model for OH chemiluminescence at high temperatures and atmospheric pressures. Int. J. Chem. Kinet. 38 (12):714–24. doi:10.1002/kin.20196.
  • Hampp, F., K. H. H. Goh, and R. P. Lindstedt. 2020. The reactivity of hydrogen enriched turbulent flames. Process Saf. Environ. 143:66–75. doi:10.1016/j.psep.2020.06.031.
  • Hampp, F., J. D. Gounder, H. Ax, R. Lückerath, O. Lammel, M. Hase, and B. Janus. 2020. High momentum jet flames at elevated pressure, E: quantification of droplet size distribution and transport. Proc. ASME Turbo Expo. GT2020–14619.
  • Hampp, F., and R. P. Lindstedt. 2017a. Quantification of combustion regime transitions in premixed turbulent DME flames. Combust. Flame 182:248–68. doi:10.1016/j.combustflame.2017.04.006.
  • Hampp, F., and R. P. Lindstedt. 2017b. Strain distribution on material surfaces during combustion regime transitions. Proc. Comb. Inst. 36 (2):1911–18. doi:10.1016/j.proci.2016.07.018.
  • Hampp, F., and R. P. Lindstedt. 2020. Quantification of fuel chemistry effects on burning modes in turbulent premixed flames. Combust. Flame 218:134–49. doi:10.1016/j.combustflame.2020.05.007.
  • Hampp, F., S. Shariatmadar, and R. P. Lindstedt. 2019. Quantification of low damköhler number turbulent premixed flames. Proc. Comb. Inst. 37 (2):2373–81. doi:10.1016/j.proci.2018.06.079.
  • Hardalupas, Y., C. S. Panoutsos, and A. M. K. P. Taylor. 2010. Spatial resolution of a chemiluminescence sensor for local heat-release rate and equivalence ratio measurements in a model gas turbine combustor. Exp. Fluids 49 (4):883–909. doi:10.1007/s00348-010-0915-z.
  • Hu, X., and Q. Yu. 2018. Effect of the elevated initial temperature on the laminar flame speeds of oxy-methane mixtures. Energy 147:876–83. doi:10.1016/j.energy.2018.01.088.
  • Ibrahim, I. A., A. M. Elzallat, M. M. Elsakka, T. M. Farag, and H. M. Gad. 2022. Numerical study of kerosene spray and combustion characteristics using an air-blast atomizer. Energy Rep. 8:5974–86. doi:10.1016/j.egyr.2022.04.046.
  • Izadi, S., J. Zanger, O. Kislat, B. Enderle, F. Grimm, P. Kutne, and M. Aigner. 2021. Experimental investigation of the combustion behavior of single-nozzle liquid-FLOX®-based burners on an atmospheric test rig. J. Eng. Gas Turb. Power 143 (7):071021. doi:10.1115/1.4049166.
  • Jenny, P., D. Roekaerts, and N. Beishuizen. 2012. Modeling of turbulent dilute spray combustion. Prog. Energ. Combust. Sci. 38 (6):846–87. doi:10.1016/j.pecs.2012.07.001.
  • Khateeb, A. A., T. F. Guiberti, X. Zhu, M. Younes, A. Jamal, and W. L. Roberts. 2020. Stability limits and NO emissions of technically-premixed ammonia-hydrogen-nitrogen-air swirl flames. Int. J. Hydrog. Energy 45 (41):22008–18. doi:10.1016/j.ijhydene.2020.05.236.
  • Kozirlski, J. A. 1991. The influence of atomizing air parameters on soot formation in heavy liquid hydrocarbon flames. Fuel Process. Technol. 27 (2):215–33. doi:10.1016/0378-3820(91)90102-I.
  • Kramlich, J. C., and P. C. Malte. 1978. Modeling and measurement of sample probe effects on pollutant gases drawn from flame zones. Combust. Sci. Technol. 18 (3–4):91–104. doi:10.1080/00102207808946841.
  • Lammel, O., T. Rödiger, M. Stöhr, H. Ax, P. Kutne, M. Severin, P. Griebel, and M. Aigner. 2014. Investigation of flame stabilization in a high-pressure multi-jet combustor by laser measurement techniques. Proc. ASME Turbo Expo. GT2014–26376.
  • Lammel, O., M. Severin, H. Ax, R. Lückerath, A. Tomasello, Y. Emmi, B. Noll, M. Aigner, and L. Panek. 2017. High momentum jet flames at elevated pressure, A: experimental and numerical investigation for different fuels. Proc. ASME Turbo Expo. GT2017–64615.
  • Lammel, O., M. Stöhr, P. Kutne, C. Dem, W. Meier, and M. Aigner. 2012. Experimental analysis of confined jet flames by laser measurement techniques. J. Eng. Gas Turb. Power 134 (4):041506–1. doi:10.1115/1.4004733.
  • Lefebvre, A. H., and V. G. McDonell. 2017. Atomization and sprays. 2. CRC press. doi:10.1201/9781315120911.
  • Lieuwen, T., V. McDonell, D. Santavicca, and T. Sattelmayer. 2008. Burner development and operability issues associated with steady flowing syngas fired combustors. Combust. Sci. Technol 180 (6):1169–92. doi:10.1080/00102200801963375.
  • Li, T., F. Hampp, and R. P. Lindstedt. 2018a. The impact of hydrogen enrichment on the flow field evolution in turbulent explosions. Combust. Flame 203:105–19. doi:10.1016/j.combustflame.2019.01.037.
  • Li, T., F. Hampp, and R. P. Lindstedt. 2018b. Turbulent explosions in hydrogen enriched syngas related fuel blends. Process Saf. Environ. 116:663–76. doi:10.1016/j.psep.2018.03.032.
  • Lorenzetto, G. E., and A. H. Lefebvre. 1977. Measurements of drop size on a plain jet airblast atomizer. Aiaa J. 15 (7):1006–10. doi:10.2514/3.60742.
  • Marchione, T., C. Allouis, A. Amoresano, and F. Beretta. 2007. Experimental investigation of a pressure swirl atomizer spray. J. Prop. Power 23 (5):1096–101. doi:10.2514/1.28513.
  • Mi, J., P. Li, F. Wang, K. P. Cheong, and G. Wang. 2021. Review on mild combustion of gaseous fuel: Its definition, ignition, evolution, and emissions. Energy Fuels 35 (9):7572–607. doi:10.1021/acs.energyfuels.1c00511.
  • Panoutsos, C. S., Y. Hardalupas, and A. M. K. P. Taylor. 2009. Numerical evaluation of equivalence ratio measurement using OH* and CH* chemiluminescence in premixed and non-premixed methane–air flames. Combust. Flame 156 (2):273–91. doi:10.1016/j.combustflame.2008.11.008.
  • Petry, N., M. Mannazhi, Z. Yin, O. Lammel, K. P. Geigle, and A. Huber. 2023. Investigation of fuel and load flexibility of an atmospheric single nozzle jet-stabilized flox combustor with hydrogen/methane-air mixtures. Proc. ASME Turbo Expo. GT2023–102392.
  • Petry, N., D. Schäfer, O. Lammel, and F. Hampp. 2022. Quantification of coflow effects on primary atomization of pressure swirl atomizers. Int. J. Multiphase Flow 149:103946. doi:10.1016/j.ijmultiphaseflow.2021.103946.
  • Reddy, V. M., and S. Kumar. 2013. Development of high intensity low emission combustor for achieving flameless combustion of liquid fuels. Prop. Power Res. 2 (2):139–47. doi:10.1016/j.jppr.2013.04.006.
  • Reuter, C. B., L. Minhyeoka, W. S. Hee, and J. Yiguang. 2017. Study of the low-temperature reactivity of large n-alkanes through cool diffusion flame extinction. Combust. Flame 179:23–32. doi:10.1016/j.combustflame.2017.01.028.
  • Rizkalla, A. A., and A. H. Lefebvre. 1975. The influence of air and liquid properties on airblast atomization. J. Fluids Eng 97 (3):316–20. doi:10.1115/1.3447309.
  • Schäfer, D., J. D. Gounder, O. Lammel, H. Ax, R. Lückerath, and M. Aigner. 2019. High momentum jet flames at elevated pressure, D: simultaneous measurements of OH/PAH PLIF and mie scattering on liquid fuels. Proc. ASME Turbo Expo. GT2019–91177.
  • Schäfer, D., J. D. Gounder, L. Oliver, H. Ax, R. Lückerath, and M. Aigner. 2019. High momentum jet flames at elevated pressure, D: Simultaneous measurement of OH/PAH PLIF and Mie scattering on liquid fuels. Proc. ASME Turbo Expo. GT2019–91177.
  • Schäfer, D., F. Hampp, O. Lammel, and M. Aigner. 2020. Investigation of spray formation and turbulent droplet transport in high momentum jet stabilized combustor injection systems. Proc. ASME Turbo Expo. GT2020–15231.
  • Schefer, R. W., R. D. Matthews, N. P. Cernansky, and R. F. Sawyer. 1973. Measurement of NO and NO2 in combustion systems. NTIS 73:AFOSR–TR–74–0139.
  • Severin, M., O. Lammel, H. Ax, R. Lückerath, and M. Aigner, 2017. High momentum jet flames at elevated pressure, b: detailed investigation of flame stabilization with simultaneous PIV and OH LIF. Proc. ASME Turbo Expo, GT2017–64556.
  • Severin, M., O. Lammel, and W. Meier. 2022. Laser diagnostic investigation of a confined premixed turbulent jet flame stabilized by recirculation. Combust. Flame 243:112061. doi:10.1016/j.combustflame.2022.112061.
  • Shanmugadas, K. P., and S. R. Chakravarthy. 2017. A canonical geometry to study wall filming and atomization in pre-filming coaxial swirl injectors. Proc. Combust. Inst. 36 (2):2467–74. doi:10.1016/j.proci.2016.08.082.
  • Shardt, N., Y. Wang, Z. Jin, and J. A. W. Elliott. 2021. Surface tension as a function of temperature and composition for a broad range of mixtures. Chem. Eng. Sci. 230:116095. doi:10.1016/j.ces.2020.116095.
  • Sharma, N., W. D. Bachalo, and A. K. Agarwal. 2020. Spray droplet size distribution and droplet velocity measurements in a firing optical engine. Phys. Fluids 32 (2):023304. doi:10.1063/1.5126498.
  • Strakey, P. A., D. G. Talley, S. V. Sankar, and W. D. Bachalo. 2000. Phase-doppler interferometry with probe-to-droplet size ratios less than unity. II. Application of the technique. Appl. Opt. 39 (22):3887–93. doi:10.1364/AO.39.003887.
  • Urbán, A., M. Malý, V. Józsa, and A. Jedelský. 2019. Effect of liquid preheating on high-velocity airblast atomization: from water to crude rapeseed oil. Exp. Thermal Fluid Sci 102:137–51. doi:10.1016/j.expthermflusci.2018.11.006.
  • Verwey, C., and M. Birouk. 2018. Fuel vaporization: effect of droplet size and turbulence at elevated temperature and pressure. Combust. Flame 189:33–48. doi:10.1016/j.combustflame.2017.10.010.
  • Walsh, K., M. Long, M. Tanoff, and M. Smooke. 1998. Experimental and computational study of CH, CH*, and OH* in an axisymmetric laminar diffusion flame. Proc. Combust. Inst 27 (1):615–23. doi:10.1016/S0082-0784(98)80453-0.
  • Wang, F., P. Li, G. Wang, and J. Mi. 2022. Moderate and intense low-oxygen dilution (mild) combustion of liquid fuels: a review. Energy Fuels 36 (15):8026–53. doi:10.1021/acs.energyfuels.2c01383.
  • Ye, J., P. R. Medwell, E. Varea, S. Kruse, B. B. Dally, and H. G. Pitsch. 2015. An experimental study on mild combustion of prevaporised liquid fuels. Appl. Energ. 151:93–101. doi:10.1016/j.apenergy.2015.04.019.
  • Zhao, Z., A. Kazakov, J. Li, and F. Dryer. 2004. The initial temperature and N2 dilution effect on the laminar flame speed of propane/air. Combust. Sci. Technol 176 (10):1705–23. doi:10.1080/00102200490487553.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.