225
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Turbulent Flame Speed and Turbulent Markstein Length in the Near Field of a Harmonically Oscillating Flame

, &
Received 11 Jul 2023, Accepted 20 Aug 2023, Published online: 01 Sep 2023

References

  • Acharya, V., D.-H. Shin, T. Lieuwen, and T. Lieuwen. 2012. Swirl effects on harmonically excited, premixed flame kinematics. Combust. Flame 159 (3):1139–50. doi:10.1016/j.combustflame.2011.09.015.
  • Baron Rayleigh, J. W. S. 1896. The theory of sound. Macmillan. U.K.
  • Beita, J., M. Talibi, S. Sadasivuni, and R. Balachandran. 2021. Thermoacoustic instability considerations for high hydrogen combustion in lean premixed gas turbine combustors: A review. Hydrogen 2 (1):33–57. doi:10.3390/hydrogen2010003.
  • Bilgili, S., V. Bychkov, and V. Akkerman. 2022. Impacts of the Lewis and Markstein numbers on premixed flame acceleration in channels due to wall friction. Phys. Fluids 34 (1). doi:10.1063/5.0067222.
  • Chakraborty, N. 2007. Comparison of displacement speed statistics of turbulent premixed flames in the regimes representing combustion in corrugated flamelets and thin reaction zones. Phys. Fluids 19 (10). doi:10.1063/1.2784947.
  • Chen, L., R. Zhang, H. Wei, and J. Pan. 2020. Effect of flame speed on knocking characteristics for SI engine under critical knocking conditions. Fuel 282:118846. doi:10.1016/j.fuel.2020.118846.
  • Crocco, L., and S.-I. Cheng. 1953. High-frequency combustion instability in rocket motor with concentrated combustion. J. American Rocket Soc 23 (5):301–13. doi:10.2514/8.4623.
  • Dally, B. B., E. Riesmeier, and N. Peters. 2004. Effect of fuel mixture on moderate and intense low oxygen dilution combustion. Combust. Flame 137 (4):418–31. doi:10.1016/j.combustflame.2004.02.011.
  • Dowling, A. P. 1999. A kinematic model of a ducted flame. J. Fluid Mech. 394:51–72. doi:10.1017/S0022112099005686.
  • Dupont, T. F., and Y. Liu. 2003. Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function. J. Comput. Phys. 190 (1):311–24. doi:10.1016/S0021-9991(03)00276-6.
  • Emerson, B., T. Lieuwen, and M. P. Juniper. 2016. Local stability analysis and eigenvalue sensitivity of reacting bluff-body wakes. J. Fluid Mech. 788:549–75. doi:10.1017/jfm.2015.724.
  • Erickson, R. R., and M. C. Soteriou. 2011. The influence of reactant temperature on the dynamics of bluff body stabilized premixed flames. Combust. Flame 158 (12):2441–57. doi:10.1016/j.combustflame.2011.05.006.
  • Gorbatenko, I., A. Nicolle, M. Silva, H. G. Im, and S. M. Sarathy. 2022. The impact of gasoline formulation on turbulent jet ignition. Fuel 324:124373. doi:10.1016/j.fuel.2022.124373.
  • Hemchandra, S. 2009. Dynamics of turbulent premixed flames in acoustic fields. Diss. Georgia Institute of Technology.
  • Hemchandra, S., N. Peters, and T. Lieuwen. 2011. Heat release response of acoustically forced turbulent premixed flames—role of kinematic restoration. Proc. Combust Inst. 33 (1):1609–17. doi:10.1016/j.proci.2010.06.115.
  • Humphrey, L., B. Emerson, and T. Lieuwen. 2018. Premixed turbulent flame speed in an oscillating disturbance field. J. Fluid Mech. 835:102–30. doi:10.1017/jfm.2017.728.
  • Kim, K., Y. J. Kim, A. J. Aspden, and D.-H. Shin. 2023. Ensemble-averaged kinematics of harmonically oscillating turbulent premixed flames. Combust. Flame 253:112815. doi:10.1016/j.combustflame.2023.112815.
  • Korea hydrogen economy roadmap 2040 – Policies. n.d. IEA. https://www.iea.org/policies/6566-korea-hydrogen-economy-roadmap-2040
  • Law, C. K., and C. J. Sung. 2000. Structure, aerodynamics, and geometry of premixed flamelets. Prog. Energy Combust. Sci. 26 (4–6):459–505. doi:10.1016/S0360-1285(00)00018-6.
  • Lieuwen, T., and V. Yang. 2006. Combustion instabilities in gas turbine engines: Operational experience, fundamental mechanisms, and modeling. United States: American Institute of Aeronautics and Astronautics. doi: 10.2514/4.866807.
  • Lipatnikov, A., and J. Chomiak. 2004. Application of the Markstein number concept to curved turbulent flames. Combust. Sci. Technol. 176 (3):331–58. doi:10.1080/00102200490256135.
  • Lipatnikov, A., and J. Chomiak. 2007. Global stretch effects in premixed turbulent combustion. Proc. Combust Inst. 31 (1):1361–68. doi:10.1016/j.proci.2006.07.015.
  • Liu, Z., V. R. Unni, S. Chaudhuri, R. Sui, C. K. Law, and A. Saha. 2021. Self-turbulization in cellularly unstable laminar flames. J. Fluid Mech. 917:A53. doi:10.1017/jfm.2021.330.
  • Li, J., Y. Xia, A. S. Morgans, and X. Han. 2017. Numerical prediction of combustion instability limit cycle oscillations for a combustor with a long flame. Combust. Flame 185:28–43. doi:10.1016/j.combustflame.2017.06.018.
  • Osher, S., R. Fedkiw, and K. Piechor. 2003. Level set methods and dynamic implicit surfaces. Appl. Mech. Rev. 57 (3):B15–B15. doi:10.1115/1.1760520.
  • Pan, J., Z. Zheng, H. Wei, M. Pan, G. Shu, and X. Liang. 2021. An experimental investigation on pre-ignition phenomena: Emphasis on the role of turbulence. Proc. Combust Inst. 38 (4):5801–10. doi:10.1016/j.proci.2020.06.240.
  • Peng, D., B. Merriman, S. Osher, H. Zhao, and M. Kang. 1999. A PDE-based fast local level set method. J. Comput. Phys. 155 (2):410–38. doi:10.1006/jcph.1999.6345.
  • Petersen, R. E., and H. W. Emmons. 1961. Stability of laminar flames. Phys. Fluids 4 (4):456–64. doi:10.1063/1.1706349.
  • Preetham, H. S., T. Lieuwen, and T. Lieuwen. 2008. Dynamics of laminar premixed flames forced by harmonic velocity disturbances. J. Propuls. Power 24 (6):1390–402. doi:10.2514/1.35432.
  • Purwar, N., M. Haeringer, B. Schuermans, and W. Polifke. 2021. Flame response to transverse velocity excitation leading to frequency doubling and modal coupling. Combust. Flame 230:111412. doi:10.1016/j.combustflame.2021.111412.
  • Schuller, T., S. Ducruix, D. Durox, and S. Candel. 2002. Modeling tools for the prediction of premixed flame transfer functions. Proc. Combust Inst. 29 (1):107–13. doi:10.1016/S1540-7489(02)80018-9.
  • Shin, D.-H. 2012. Premixed flame kinematics in a harmonically oscillating velocity field. Diss. Georgia Institute of Technology.
  • Shin, D.-H., and T. Lieuwen. 2012. Flame wrinkle destruction processes in harmonically forced, laminar premixed flames. Combust. Flame 159 (11):3312–22. doi:10.1016/j.combustflame.2012.06.015.
  • Shin, D.-H., and T. Lieuwen. 2013. Flame wrinkle destruction processes in harmonically forced, turbulent premixed flames. J. Fluid Mech. 721:484–513. doi:10.1017/jfm.2013.67.
  • Silva, M., X. Liu, P. Hlaing, S. Sanal, E. Cenker, J. Chang, J. Bengt, and H. G. Im. 2022. Computational assessment of effects of throat diameter on combustion and turbulence characteristics in a pre-chamber engine. Appl. Therm. Eng. 212:118595. doi:10.1016/j.applthermaleng.2022.118595.
  • Smereka, P. 2006. The numerical approximation of a delta function with application to level set methods. J. Comput. Phys. 211 (1):77–90. doi:10.1016/j.jcp.2005.05.005.
  • Smirnov, A., S. Shi, and I. Celik. 2001. Random flow generation technique for large eddy simulations and particle-dynamics modeling. J. Fluids Eng. 123 (2):359–71. doi:10.1115/1.1369598.
  • Somappa, S., L. Humphrey, B. Emerson, and T. Lieuwen. 2019. Strain–curvature coupling in harmonically excited, turbulent premixed flames. Proc. Combust Inst. 37 (2):2469–76. doi:10.1016/j.proci.2018.05.037.
  • Tsuji, H., A. K. Gupta, T. Hasegawa, M. Katsuki, K. Kishimoto, and M. Morita. 2002. High temperature air combustion: From energy conservation to pollution reduction. CRC press.
  • Valera-Medina, A., D. G. Pugh, P. Marsh, G. Bulat, and P. Bowen. 2017. Preliminary study on lean premixed combustion of ammonia-hydrogen for swirling gas turbine combustors. Int. J. Hydrog Energy 42 (38):24495–503. doi:10.1016/j.ijhydene.2017.08.028.
  • Wei, H., J. Zhao, X. Zhang, J. Pan, J. Hua, and L. Zhou. 2019. Turbulent flame–shock interaction inducing end-gas autoignition in a confined space. Combust. Flame 204:137–41. doi:10.1016/j.combustflame.2019.03.002.
  • Wenzel, H., and N. Peters. 2000. Direct numerical simulation and modeling of kinematic restoration, dissipation and gas expansion effects of premixed flames in homogeneous turbulence. Combust. Sci. Technol. 158 (1):273–97. doi:10.1080/00102200008947337.
  • Williams, F. A. 1985. Combustion theory. Boston, U.S.A.: Addison-Wesley.
  • Xia, Y., D. Laera, W. P. Jones, and A. S. Morgans. 2019. Numerical prediction of the flame describing function and thermoacoustic limit cycle for a pressurised gas turbine combustor. Combust. Sci. Technol. 191 (5–6):979–1002. doi:10.1080/00102202.2019.1583221.
  • Zhang, W., J. Wang, W. Lin, G. Li, Z. Hu, M. Zhang, and Z. Huang. 2021. Effect of hydrogen enrichment on flame broadening of turbulent premixed flames in thin reaction regime. Int. J. Hydrog Energy 46 (1):1210–18. doi:10.1016/j.ijhydene.2020.09.159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.