110
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study on Thermal Behavior Characteristics and Microstructure Evolution Mechanism of Residual Coal Combustion Process in Deep High Initial Temperature Environment

, , &
Received 01 Aug 2023, Accepted 12 Oct 2023, Published online: 26 Oct 2023

References

  • Cai, J. W., S. Q. Yang, X. C. Hu, W. X. Song, Q. Xu, B. Z. Zhou, and Y. W. Song. 2019. Forecast of coal spontaneous combustion based on the variations of functional groups and microcrystalline structure during low-temperature oxidation. Fuel 253:339–348. doi:10.1016/j.fuel.2019.05.040.
  • Chao, J. K., Q. Y. Gua, R. K. Pan, X. F. Han, D. M. Hua, W. Lin, and S. Liu. 2022. Influence of a high-temperature environment in deep mining on the characteristics of coal spontaneous combustion. Combust. Sci. Technol. 1:1–19. doi:10.1080/00102202.2022.2093110.
  • Chen, J. B. 2019. Research on coal spontaneous combustion law and fire prevention and extinguishing technology in daliuta coal mine. Shaanxi: Xi ‘an University of Science and Technology.
  • Cui, J. F., W. J. Wang, and C. Yuan. 2022. Application of stability analysis in surrounding rock control and support model of deep roadway. Int. J. Oil. Gas Coal Technol. 29 (2):180. doi:10.1504/IJOGCT.2022.120313.
  • Deng, J., P. Hu, Z. J. Bai, C. P. Wang, F. R. Kang, and L. Liu. 2022. Dynamic behaviours on oxidation caloric release of key active groups for coal with different degrees of metamorphism. Fuel 320. doi:10.1016/j.fuel.2022.123967.
  • Deng, J., J. Y. Zhao, A. C. Huang, Y. N. Zhang, C. P. Wang, and C. M. Shu. 2017. Thermal behavior and microcharacterization analysis of second-oxidized coal. J. Therm. Anal. Calorim. 127 (1):439–48. doi:10.1007/s10973-016-5493-8.
  • Fu, H. Z., J. Xie, Y. Song, and L. Xin. 2019. The researches on micro influencing factors of Huainan lignite spontaneous combustion based on FTIR. Proceedings of the 7th Academic Conference of Geology Resource Management and Sustainable Development, Beijing. Aussino Academic Publishing House. 299–306.
  • Gao, Y. K., H. R. Lei, X. Y. Yin, Y. H, Z. A. Huang, Y. C. Yin, S. L. Xiao, and P. F. Wang. 2023. Study of the change laws of free radicals and functional groups during coal oxidation. ACS. Omega 8 (7):7102–10. doi:10.1021/acsomega.2c08057.
  • Jia, H. L., B. Cui, Z. Y. Jiao, W. L. Zhao, Q. Q. Xu, and F. N. Sun. 2022. Study on the whole process and gas products of coal-oxygen composite based on TG/DSC/MS technology. J. Coal. 47 (10):3704–14.
  • Jia, H. L., Y. Yang, W. X. Ren, Z. H. Kang, and J. T. Shi. 2022. Experimental study on the characteristics of the spontaneous combustion of coal at high ground temperatures. Combust. Sci. Technol 194 (14):2880–93. doi:10.1080/00102202.2021.1895775.
  • Kong, B., Z. H. Li, E. Y. Wang, W. L, L. Chen, and G. S. Qi. 2018. An experimental study for characterization the process of coal oxidation and spontaneous combustion by electromagnetic radiation technique. Process Saf. Environ. Prot. 119.
  • Li, J. L. 2020. Study on gas production mechanism of coal low temperature oxidation process. Shandong: Shandong University of Science and Technology.
  • Liang, Y. T., F. C. Tian, B. L. Guo, and Z. D. Liu. 2021. Experimental investigation on microstructure evolution and spontaneous combustion properties of aerobic heated coal. Fuel 306:121766. doi:10.1016/j.fuel.2021.121766.
  • Li, E. G., Q. B. Li, J. L. Yang, J. R. Zhao, and Y. Xiao. 2023. Spontaneous combustion characteristics of non-caking coal with different oxidation degrees in 106 coal mines in Xinjiang. J. Xi ‘An Univ. Sci. Technol. 1:81–88.
  • Li, G. F., H. J. Niu, and D. D. Wang. 2019. Experimental study on coal spontaneous combustion characteristics and limit parameters in high ground temperature mines. Shandong Coal Sci. Technol. 11:100–03.
  • Lu, X., J. Deng, Y. Xiao, X. Zhai, C. Wang, and X. Yi. 2022. Recent progress and perspective on thermal-kinetic, heat and mass transportation of coal spontaneous combustion hazard. Fuel 308:121234. doi:10.1016/j.fuel.2021.121234.
  • Ma, L., X. L. Fan, G. M. Wei, Y. J. Sheng, S. M. Liu, and X. X. Liu. 2023. Preparation and characterization of antioxidant gel foam for preventing coal spontaneous combustion. Fuel 338. doi:10.1016/j.fuel.2022.127270.
  • Ma, L., R. Z. Guo, Y. G, L. F. Ren, G. M. Wei, and C. H. Li. 2019. Study on coal spontaneous combustion characteristics under methane-containing atmosphere. Combust. Sci. Technol. 191 (8):1456–72. doi:10.1080/00102202.2018.1531286.
  • Ma, L., C. K. Lei, K. Wang, and Y. Guo. 2016. Experimental study on the influence of high ground temperature environment on the risk of coal spontaneous combustion. Int. J. Coal Sci. Technol. 44 (1):144–8 + 156.
  • Nie, X. X., X. B. Wei, X. C. Li, and C. W. Lu. 2018. Heat treatment and ventilation optimization in a deep mine. Adv. Civ. Eng. 2018:1–12. doi:10.1155/2018/1529490.
  • Niu, H. Y., Q. Q. Sun, Y. C. Bu, H. Y. Chen, Y. X. Yang, S. P. Li, M. Tao, Z.-H. Mao, and M. Tao. 2022. Study of the microstructure and oxidation characteristics of residual coal in deep mines. J. Clean. Prod. 373:133923. doi:10.1016/j.jclepro.2022.133923.
  • Niu, H. Y., Q. Q. Sun, S. P. Li, S. W. Sun, Y. C. Bu, Y. X. Yang, M. Tao, and M. Tao. 2023. Study on the thermal release characteristics and the correlation transformation mechanism of microscopic active groups of oxidized coal combustion in a deep mined-out area. Sci. Total Environ. 890:890. doi:10.1016/j.scitotenv.2023.164354.
  • Qin, X., J. R. Wang, and M. L. Zhang. 2023. Experimental study on the influence of associated pyrite content on coal spontaneous combustion. Int. J. Coal Prep. Util. 43 (2):288–307. doi:10.1080/19392699.2022.2051009.
  • Qin, R. X., L. Zhou, Y. Gan, and Y. W. Huang. 2021. Oxidation characteristics and active group evolution of oil-immersed coal. Environ. Earth Sci. 80 (12). doi:10.1007/s12665-021-09671-x.
  • Sheng, J., W. Wan, D. R. Liu, F. F. Jiang, X. D. Li, H. Y. Zhang, and X. Xi. 2021. Investigation of the optimization of unloading mining scheme in large deep deposit based on vague set theory and its application. Adv. Civ. Eng. 2021:1–13. doi:10.1155/2021/6690861.
  • Shi, Q. L., W. J. Jiang, B. T. Qin, M. Y. Hao, and Z. Y. He. 2023. Effects of oxidation temperature on microstructure and spontaneous combustion characteristics of coal: A case study of shendong long-flame coal. Energy 284:284. doi:10.1016/j.energy.2023.128631.
  • Sun, H. T., L. C. Dai, J. Lu, J. Cao, and M. H. Li. 2022. Analyzing energy transfer mechanism during coal and gas protrusion in deep mines. Processes 10 (12):2634. doi:10.3390/pr10122634.
  • Wang, F. 2022. Simulation study on the influence of high temperature in deep goaf environment on the spontaneous combustion process of residual coal. Shaanxi: Xi ‘an University of Science and Technology.
  • Wang, D. M., H. H. Xin, X. Y. Qi, G. L. Dou, G. S. Qi, and L. Y. Ma. 2016. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics. Combust. Flame 163 (Jan):447–60. doi:10.1016/j.combustflame.2015.10.019.
  • Wu, C., and R. B. Deng. 2020. Experimental study on low-temperature oxidization characteristics of coal body in the air-mining zone. J. Huazhong Univ. Sci. Technol. 30 (06):623–28.
  • Wu, D., and W. Y. Zhang. 2019. Evolution mechanism of macromolecular structure in coal during heat treatment: Based on FTIR and XRD in situ analysis techniques. J. Spectrosc. 2019:1–18. doi:10.1155/2019/5037836.
  • Xiang, Y., D. X. Pang, J. P. Zhou, and S. M. Lin. 2016. Combustion characteristics and reaction kinetics analysis of oilfield waste liquid coal slurry. Thermal Power Engg. 31 (7):86–91 + 137.
  • Xi, Z. L., M. M. Li, X. Li, L. P. Lu, and J. W. Wang. 2022. Reaction mechanisms involving the hydroxyl radical in the low-temperature oxidation of coal. Fuel 314:314. doi:10.1016/j.fuel.2021.122732.
  • Xin, H. H., W. J. Tian, B. H. Zhou, J. F. Wu, Z. Y. Xu, L. Lu, and D. M. Wang. 2023. Characteristics of CO, CO2 generation and reactive group conversion in isothermal smoldering combustion of coal. Fuel 332 (P2).
  • Xu, T., J. L. Qi, X. B. Li, and Y. J. Wu. 2021. Heat effect of oxidation of aliphatic hydrocarbon groups on the piecewise characteristics and spontaneous combustion tendency of coal. Solid Fuel Chem. 55 (5):338–47. doi:10.3103/S0361521921050098.
  • Xu, Q., S. Q. Yang, X. C. Hu, W. X. Song, J. W. Cai, and B. Z. Zhou. 2019. Low-temperature oxidation of free radicals and functional groups in coal during the extraction of coalbed methane. Fuel 239:429–36. doi:10.1016/j.fuel.2018.11.060.
  • Xu, D. X., L. J. Zhang, W. J. He, Y. L. Xu, Y. B. Zhao, J. Zhu, and Q. K. Qi. 2023. The generation mechanism of CO and CO2 in coal spontaneous combustion by mathematical statistical and other methods. Fuel 350:350. doi:10.1016/j.fuel.2023.128747.
  • Yao, W. J., and J. Y. Pang. 2018. Research status and progress of thermal environment in deep mines in China. Process Saf. Environ. Prot 45 (1):107–11.
  • Yuan, L., and J. B. Fei. 2014. Study on the law of low temperature oxidation of coal based on infrared spectroscopy. Shaanxi Coal 33 (2):45–48.
  • Zhang, Y. N., C. H. Liu, J. J. Song, and A. P. Wang. 2020. Study on the migration pattern of major functional groups in the low-temperature oxidation of long-flame coal. Int. J. Coal Sci. Technol. 03:188–96.
  • Zhang, Y. N., A. P. Wang, L. Chen, and C. H. Liu. 2021. Study of thermal characteristics and functional group changes of yanghuopan coal during spontaneous combustion. J Therm Anal Calorim 147 (5):3753–61. doi:10.1007/s10973-021-10802-6.
  • Zhao, J. Y. 2017. Study on the oxidation kinetics process and microstructure evolution characteristics of Huainan coal. Shaanxi: Xi ‘an University of Technology.
  • Zhao, Y. F. 2021. Study on the formation of acetaldehyde and the conversion characteristics of aldehyde groups during coal oxidation. shanxi: Taiyuan University of Technology.
  • Zhou, B. Z., S. Q. Yang, X. Y. Jiang, J. W. Cai, Q. Xu, W. X. Song, and Q. C. Zhou. 2021. The reaction of free radicals and functional groups during coal oxidation at low temperature under different oxygen concentrations. Process Saf. Environ. Prot. 150:148–56. doi:10.1016/j.psep.2021.04.007.
  • Zhou, B. Z., S. Q. Yang, C. J. Wang, N. W. Sang, W. Song, J. Cai, Q. Xu, and N. Sang. 2020. The characterization of free radical reaction in coal low-temperature oxidation with different oxygen concentration. Fuel 262 (C):116524. doi:10.1016/j.fuel.2019.116524.
  • Zhu, H. Q., Y. J. Huo, S. H. Fang, X. He, W. Wang, and Y. L. Zhang. 2020. Quantum chemical calculation of original aldehyde groups reaction mechanism in coal spontaneous combustion. Energ. Fuels 34 (11):14776–85. doi:10.1021/acs.energyfuels.0c02474.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.