125
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Confinement Effects on Coaxial Jet Diffusion Flame

, , &
Received 12 Jun 2023, Accepted 26 Oct 2023, Published online: 09 Nov 2023

References

  • Bai, N. J., W. J. Fan, and R. C. Zhang. 2023. A mixing enhancement mechanism for a hydrogen transverse jet coupled with a shear layer for gas turbine combustion. Phys. Fluids 35:4. doi:10.1063/5.0142960.
  • Barchilon, M., and R. Curtet. 1964. Some details of the structure of an axisymmetric confined jet with backflow. J. B. E 86 (4):777–87. doi:10.1115/1.3655953.
  • Blevins, L. G., and J. P. Gore. 1995. A study of radiant tube flame structure and NOx emissions. Combust. Sci. Technol 109 (1–6):255–71. doi:10.1080/00102209508951904.
  • Burke, S. P., and T. E. W. Schumann. 1928. Diffusion flames. Proc. Sym. On Combust 20 (10):999–1004. doi:10.1021/ie50226a005.
  • Cha, M. S., and S. H. Chung. 1996. Characteristics of lifted flames in nonpremixed turbulent confined jets. ISOC 26 (1):121–28. doi:10.1016/S0082-0784(96)80208-6.
  • Chemkin-Pro. 2021. Reaction Design. San Diego.
  • Chen, C. C., and A. K. Gupta. 2007. Computational study of a MEMS-based catalyzed micro-thruster with homogeneous chemical reaction. In Proceedings of Technical Papers - 2007, IMPACT, 305–08. doi:10.1109/IMPACT.2007.4433623.
  • Chen, M. F., D. Liu, and J. Bo. 2020. Soot formation and combustion characteristics in confined mesoscale combustors under conventional and oxy-combustion conditions (O2/N2 and O2/CO2). Fuel 264 (March):116808. doi:10.1016/j.fuel.2019.116808.
  • Chou, S. K., W. M. Yang, K. J. Chua, J. Li, and K. L. Zhang. 2011. Development of micro power generators - a review. Appl. Energ. 88 (1):1–16. doi:10.1016/j.apenergy.2010.07.010.
  • Chu, H. Q., W. W. Han, W. J. Cao, M. Y. Gu, and G. J. Xu. 2019. Effect of methane addition to ethylene on the morphology and size distribution of soot in a laminar co-flow diffusion flame. Energy 166:392–400. doi:10.1016/j.energy.2018.10.093.
  • Chung, S. H., and C. K. Law. 1984. Burke–Schumann flame with streamwise and preferential diffusion. Combust. Sci. Technol 37 (1–2):21–46. doi:10.1080/00102208408923744.
  • Chu, H. Q., Y. C. Ya, X. K. Nie, Y. Zhou, J. L. Hu, S. L. Dong, and E. Jiaqiang. 2020. Effects of ethanol and 2, 5-dimethylfuran addition on the morphology and nanostructure evolution of soot in gasoline primary reference fuel-air coflow diffusion flames. Fuel 281 (March):118711. doi:10.1016/j.fuel.2020.118711.
  • Curtet, R. 1958. Confined jets and recirculation phenomena with cold air. Combust. Flame 2 (4):383–411. doi:10.1016/0010-2180(58)90032-4.
  • Doerksen, G., Z. Paul, K. Artem, and J. Craig. 2022. A numerical investigation of recirculation in axisymmetric confined jets. Chem. Eng. Sci. 254 (June):117603. doi:10.1016/j.ces.2022.117603.
  • Elbaz, A. M., and W. L. Roberts. 2016. Investigation of the effects of quarl and initial conditions on swirling non-premixed methane flames: Flow field, temperature, and species distributions. Fuel 169:120–34. doi:10.1016/j.fuel.2015.12.015.
  • Exley, J. T., and J. A. Brighton. 1971. Flow separation and reattachment in confined jet mixing. JBE 93 (2):192–98. doi:10.1115/1.3425211.
  • Fernandez-Pello, A. C. 2002. Micropower generation using combustion: Issues and approaches. Proc. Combust. Inst. 29 (1):883–99. doi:10.1016/s1540-7489(02)80113-4.
  • Gan, Y. H., J. L. Xu, Y. Y. Yan, M. Wang, Y. L. Luo, and Z. L. Yang. 2014. A comparative study on free jet and confined jet diffusion flames of liquid ethanol from small nozzles. Combust. Sci. Technol 186 (2):120–38. doi:10.1080/00102202.2013.851077.
  • Giorgi, M. D., S. Aldebara, C. Stefano, and F. Antonio. 2017. Flame structure and chemiluminescence emissions of inverse diffusion flames under sinusoidally driven plasma discharges. Energies 10 (3):334. doi:10.3390/en10030334.
  • Hamed, A. M., M. M. Kamal, and A. E. Hussin. 2023. Characteristics of hollow bluff body-stabilized natural gas-air premixed flames with heat recirculation. Fuel 333 (P2):126430. doi:10.1016/j.fuel.2022.126430.
  • Hariharan, V., and D. P. Mishra. 2020. Static flame stability of circumferentially arranged fuel port inverse jet non-premixed flame burner. Combust. Sci. Technol 192 (8):1493–519. doi:10.1080/00102202.2019.1611567.
  • Hill, P. G. 1965. Turbulent jets in ducted streams. J. Fluid. Mech. 22 (1):161–86. doi:10.1017/S0022112065000654.
  • Hosseini, A. A., G. Maryam, M. Mohammad, and H. P. Seyed. 2020. Numerical study of inlet air swirl intensity effect of a methane-air diffusion flame on its combustion characteristics. Case Stud. Therm. Eng. 18 (April):100610. doi:10.1016/j.csite.2020.100610.
  • Hunger, F., S. Björn, T. Dimosthenis, and H. Christian. 2013. Flamelet-modeling of inverse rich diffusion flames. Flow Turbul. Combust. 90 (4):833–57. doi:10.1007/s10494-012-9422-z.
  • Kana-Donfack, P., C. Kapseu, D. Tcheukam-Toko, and G. Ndong-Essengue. 2019. Numerical modeling of sugarcane bagasse combustion in sugar mill boiler. JEPE 13 (2):80–90. doi:10.17265/1934-8975/2019.02.004.
  • Karnani, S., and D. Dunn-Rankin. 2013. Visualizing CH* chemiluminescence in sooting flames. Combust. Flame 160 (10):2275–78. doi:10.1016/j.combustflame.2013.05.002.
  • Karyeyen, S. 2018. Combustion characteristics of a non-premixed methane flame in a generated burner under distributed combustion conditions: A numerical study. Fuel 230 (May):163–71. doi:10.1016/j.fuel.2018.05.052.
  • Khalil, A. E. E., and A. K. Gupta. 2016. On the flame-flow interaction under distributed combustion conditions. Fuel 182:17–26. doi:10.1016/j.fuel.2016.05.071.
  • Krishnamoorthy, G. 2017. A computationally efficient P1 radiation model for modern combustion systems utilizing pre-conditioned conjugate gradient methods. Appl. Therm. Eng. 119:197–206. doi:10.1016/j.applthermaleng.2017.03.055.
  • Larsson, I. A. S., L. Henrik, T. S. Lundström, and B. D. Marjavaara. 2020. Experimental study of confined coaxial jets in a non-axisymmetric co-flow. Exp. Fluids 61 (12):1–17. doi:10.1007/s00348-020-03094-3.
  • Lemétayer, J., M. B. Lars, and P. W. Lisa. 2020. Confined jets in co-flow: Effect of the flow rate ratio and lateral position of a return cannula on the flow dynamics. SN Appl. Sci. 2 (3):1–15. doi:10.1007/s42452-020-2077-9.
  • Léonard, S., G. W. Mulholland, R. Puri, and R. J. Santoro. 1994. Generation of CO and smoke during underventilated combustion. Combust. Flame 98 (1–2):20–34. doi:10.1016/0010-2180(94)90195-3.
  • Li, L. H., and A. W. Fan. 2021. A numerical study on non-premixed H2/Air flame stability in a micro-combustor with a slotted bluff-body. Int. J. Hydrog Energy 46 (2):2658–66. doi:10.1016/j.ijhydene.2020.10.024.
  • Li, X., and L. Jia. 2014. Investigation on combustion characteristics and NO formation of methane with swirling and non-swirling high temperature air. J. Therm. Sci. 23 (5):472–79. doi:10.1007/s11630-014-0731-5.
  • Lin, Y. Y., B. C. Zhu, J. C. Chen, J. J. Wu, K. Lu, M. Y. Gu, and H. Q. Chu. 2020. Study of soot functional groups and morphological characteristics in laminar coflow methane and ethylene diffusion flames with hydrogen addition. Fuel 279 (March):118474. doi:https://doi.org/10.1016/j.fuel.2020.118474.
  • Mahesh, S., and D. P. Mishra. 2008. Flame stability and emission characteristics of turbulent LPG IDF in a backstep burner. Fuel 87 (12):2614–19. doi:10.1016/j.fuel.2008.02.001.
  • Masquelet, M., and S. Menon. 2010. Large-eddy simulation of flame-turbulence interactions in a shear coaxial injector. J. Propuls. Power 26 (5):924–35. doi:10.2514/1.48023.
  • Mullinger, P., and B. Jenkins. 2008. Industrial and process furnaces: Principles, design and operation. Chennai: Butterworth-Heinemann.
  • Rajaratnam, N. 1976. Turbulent jets. Elsevier. New York: Elsevier. https://linkinghub.elsevier.com/retrieve/pii/B9780120218134500068%0Ahttps://www.cambridge.org/core/product/identifier/S0022112077220866/type/journal_article.
  • Roper, F. G. 1977. The prediction of laminar jet diffusion flame sizes: Part I. theoretical model. Combust. Flame 29 (January):219–26. doi:10.1016/0010-2180(77)90112-2.
  • Roper, F. G., C. Smith, and A. C. Cunningham. 1977. The prediction of laminar jet diffusion flame sizes: Part II. experimental verification. Combust. Flame 29 (C):227–34. doi:10.1016/0010-2180(77)90113-4.
  • Sahraei, M. H., A. D. Marc, W. H. Robin, and A. R. S. Luis. 2017. Dynamic reduced order modeling of an entrained-flow slagging gasifier using a new recirculation ratio correlation. Fuel 196:520–31. doi:10.1016/j.fuel.2017.01.079.
  • Scribano, G., S. Giulio, and C. Aldo. 2006. Pollutant emissions reduction and performance optimization of an industrial radiant tube burner. Exp. Therm. Fluid Sci. 30 (7):605–12. doi:10.1016/j.expthermflusci.2005.12.006.
  • Scribano, G., and M. V. Tran. 2020. Numerical investigation of a confined diffusion flame in a swirl burner. Eur. J. Mech. B-Fluid 82:1–10. doi:10.1016/j.euromechflu.2020.02.007.
  • Song, X. D., R. M. Wu, Y. Zhou, J. F. Wang, J. T. Wei, J. Y. Li, and G. S. Yu. 2021. Understanding the influence of burner structure on the stability and chemiluminescence of inverse diffusion flame. Int. J. Hydrog Energy 46 (48):24461–71. doi:10.1016/j.ijhydene.2021.05.015.
  • Stelzner, B., F. Hunger, A. Laugwitz, M. Gräbner, S. Voss, K. Uebel, M. Schurz, Schimpke R., Weise S., Krzack S. et al. 2013. Development of an inverse diffusion partial oxidation flame and model burner contributing to the development of 3rd generation coal gasifiers. Fuel Process Technol. 110:33–45. doi:10.1016/j.fuproc.2013.01.005.
  • Walther, D. C., and J. Ahn. 2011. Advances and challenges in the development of power-generation systems at small scales. Prog. Energy. Combust 37 (5):583–610. doi:10.1016/j.pecs.2010.12.002.
  • Wang, Z. Y., B. S. Peter, and L. A. Richard. 2020. Double blue zones in inverse and normal laminar jet diffusion flames. Combust. Flame 211:253–59. doi:10.1016/j.combustflame.2019.09.014.
  • Yamamoto, K., and S. Ishizuka. 2003. Temperatures of positively and negatively stretched flames. JSME Int. J. Ser. B 46 (1):198–205. doi:10.1299/jsmeb.46.198.
  • Zhang, W. K., W. J. Kong, C. J. Sui, T. Wang, and L. Peng. 2022. Effect of hydrogen-rich fuels on turbulent combustion of advanced gas turbine. J. Therm. Sci. 31 (2):561–70. doi:10.1007/s11630-021-1539-8.
  • Zhang, H. T., F. Y. Li, G. F. Wang, Q. F. Huang, and Q. Z. Lin. 2018. Liftoff behavior and combustion characteristic of jet flame in a coflow burner. Energy Sources, Part A: Recovery, Util., Environ. Eff. 40 (11):1366–73. doi:10.1080/15567036.2018.1476624.
  • Zhao, M., and A. W. Fan. 2020. Buoyancy effects on hydrogen diffusion flames confined in a small tube. Int. J. Hydrog Energy 45 (38):19926–35. doi:10.1016/j.ijhydene.2020.05.010.
  • Zhao, M., L. Liu, and A. W. Fan. 2020. Comparison of combustion efficiency of micro hydrogen jet flames confined in cylindrical tubes of different diameters. Chem. Eng. Process. 153 (July):108000. doi:10.1016/j.cep.2020.108000.
  • Zhen, H. S., Y. S. Choy, C. W. Leung, and C. S. Cheung. 2011. Effects of nozzle length on flame and emission behaviors of multi-fuel-jet inverse diffusion flame burner. Appl. Energy 88 (9):2917–24. doi:10.1016/j.apenergy.2011.02.040.
  • Zhu, X. R., X. Xi, and P. Zhang. 2018. Near-field flow stability of buoyant methane/air inverse diffusion flames. Combust. Flame 191 (May):66–75. doi:10.1016/j.combustflame.2018.01.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.