310
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prediction Method for Instability Boundaries of Self-Excited Oscillation Combustion in a Model Combustor

, , , &
Received 21 Apr 2023, Accepted 26 Oct 2023, Published online: 12 Nov 2023

References

  • Ahn, B., J. Lee, S. Jung, and K. T. Kim. 2019. Nonlinear mode transition mechanisms of a self-excited jet A-1 spray flame. Combust. Flame 203:170–79. doi:10.1016/j.combustflame.2019.02.008.
  • Andreini, A., B. Facchini, A. Giusti, I. Vitale, and F. Turrini. 2013. Thermoacoustic analysis of a full annular lean burn aero-engine combustor. In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition Volume 1A: Combustion, Fuels and Emissions. San Antonio: The American Society of Mechanical Engineers Digital Collection. doi:10.1115/gt2013-94877.
  • Bellows, B. D., M. K. Bobba, A. Forte, J. M. Seitzman, and T. Lieuwen. 2007. Flame transfer function saturation mechanisms in a swirl-stabilized combustor. Proc. Combust. Inst. 31 (2):3181–88. doi:10.1016/j.proci.2006.07.138.
  • Bellows, B. D., M. K. Bobba, J. M. Seitzman, and T. Lieuwen. 2006. Nonlinear flame transfer function characteristics in a Swirl-stabilized combustor. J. Eng. Gas Turbines Power 129 (4):954–61. doi:10.1115/1.2720545.
  • Bernier, D., F. Lacas, and S. Candel. 2004. Instability mechanisms in a premixed prevaporized combustor. J. Propuls. Power 20 (4):648–56. doi:10.2514/1.11461.
  • Chen, Y., L. J. Ayton, and D. Zhao. 2019. Modelling of intrinsic thermoacoustic instability of premixed flame in combustors with changes in cross section. Combust. Sci. Technol 192 (5):832–51. doi:10.1080/00102202.2019.1594799.
  • Crocco, L. 1951. Aspects of combustion stability in liquid propellant rocket motors part I: Fundamentals. Low frequency instability with monopropellants. J. Am. Rocket Soc 21 (6):163–78. doi:10.2514/8.4393.
  • Cuquel, A., D. Durox, and T. Schuller. 2013. Scaling the flame transfer function of confined premixed conical flames. Proc. Combust. Inst. 34 (1):1007–14. doi:10.1016/j.proci.2012.06.056.
  • D’Alessandro, S., M. L. Frezzotti, B. Favini, and F. Nasuti. 2018. A multi-dimensional approach for low order modeling of combustion instability in a rocket combustor. 2018 Joint Propulsion Conference, p. 4677. Cincinnati, Ohio: American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2018-4677.
  • Dowling, A. P. 1997. Nonlinear self-excited oscillations of a ducted flame. J. Fluid. Mech. 346:271–90. doi:10.1017/S0022112097006484.
  • Ducruix, S., D. Durox, and S. Candel. 2000. Theoretical and experimental determinations of the transfer function of a laminar premixed flame. Proc. Combust. Inst. 28 (1):765–73. doi:10.1016/S0082-0784(00)80279-9.
  • Ducruix, S., T. Schuller, D. Durox, and S. Candel. 2003. Combustion dynamics and instabilities: Elementary coupling and driving mechanisms. J. Propuls. Power 19 (5):722–34. doi:10.2514/2.6182.
  • Förner, K., A. C. Miranda, and W. Polifke. 2015. Mapping the influence of acoustic resonators on rocket engine combustion stability. J. Propuls. Power 31 (4):1159–66. doi:10.2514/1.B35660.
  • Ghani, A., and A. Albayrak. 2022. From pressure time series data to flame transfer functions: A framework for perfectly premixed swirling flames. J. Eng. Gas Turbines Power 145 (1):011005. doi:10.1115/1.4055724.
  • Ghirardo, G., M. P. Juniper, and J. P. Moeck. 2016. Weakly nonlinear analysis of thermoacoustic instabilities in annular combustors. J. Fluid. Mech. 805:52–87. doi:10.1017/jfm.2016.494.
  • Goh, C. S., and A. S. Morgans. 2013. The influence of entropy waves on the thermoacoustic stability of a model combustor. Combust. Sci. Technol 185 (2):249–68. doi:10.1080/00102202.2012.715828.
  • Han, X., D. Yang, J. Wang, and C. Zhang. 2021. The effect of inlet boundaries on combustion instability in a pressure-elevated combustor. Aerosp. Sci. Technol. 111:106517. doi:10.1016/j.ast.2021.106517.
  • Hield, P. A., M. J. Brear, and S. H. Jin. 2009. Thermoacoustic limit cycles in a premixed laboratory combustor with open and choked exits. Combust. Flame 156 (9):1683–97. doi:10.1016/j.combustflame.2009.05.011.
  • Huang, Y., and V. Yang. 2009. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 35 (4):293–364. doi:10.1016/j.pecs.2009.01.002.
  • Jones, D. R. 2001. A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21 (4):345–83. doi:10.1023/A:1012771025575.
  • Kaiser, T. L., G. Öztarlik, L. Selle, and T. Poinsot. 2019. Impact of symmetry breaking on the flame transfer function of a laminar premixed flame. Proc. Combust. Inst. 37 (2):1953–60. doi:10.1016/j.proci.2018.06.047.
  • Khalil, A. E. E., and A. K. Gupta. 2017. Acoustic and heat release signatures for swirl assisted distributed combustion. Appl. Energy 193:125–38. doi:10.1016/j.apenergy.2017.02.030.
  • Lefebvre, A. H., and D. R. Ballal. 2010. Gas turbine combustion: Alternative fuels and emissions. 3rd ed. Boca Raton: Taylor & Francis. doi:10.1201/9781420086058.
  • Lieuwen, T. C., and V. Yang, eds. 2005. Combustion instabilities in gas turbine engines: Operational experience, fundamental mechanisms, and modeling. Reston: American Institute of Aeronautics and Astronautics.
  • Li, J., and A. S. Morgans. 2015. Time domain simulations of nonlinear thermoacoustic behaviour in a simple combustor using a wave-based approach. J. Sound Vib. 346:345–60. doi:10.1016/j.jsv.2015.01.032.
  • Liu, W., L. Zhang, R. Xue, Q. Yang, and H. Wang. 2021. Experimental investigation on nonlinear response of a low-swirl flame to acoustic excitation with large amplitude. J. Eng. Gas Turbines Power 143 (12):121021. doi:10.1115/1.4052024.
  • Li, J., Y. Xia, A. S. Morgans, and X. Han. 2017. Numerical prediction of combustion instability limit cycle oscillations for a combustor with a long flame. Combust. Flame 185:28–43. doi:10.1016/j.combustflame.2017.06.018.
  • Li, J., D. Yang, C. Luzzato, and A. S. Morgans. 2017. Open source combustion instability low order simulator (OSCILOS-Long) technical report. Imperial College London, UK: Department of Aeronautics. Accessed November 22, 2022. 9https://www.oscilos.com/download/OSCILOS_Long_Tech_report.pdf or https://github.com/MorgansLab/OSCILOS_long/blob/main/docs/OSCILOS_Long_Tech_report.pdf.
  • Mahmoudi, Y., A. Giusti, E. Mastorakos, and A. P. Dowling. 2017. Low-order modeling of combustion noise in an aero-engine: The effect of entropy dispersion. J. Eng. Gas Turbines Power 140 (1). doi:10.1115/1.4037321.
  • Mejia, D., M. Miguel-Brebion, A. Ghani, T. Kaiser, F. Duchaine, L. Selle, and T. Poinsot. 2018. Influence of flame-holder temperature on the acoustic flame transfer functions of a laminar flame. Combust. Flame 188:5–12. doi:10.1016/j.combustflame.2017.09.016.
  • Merk, M., S. Jaensch, C. Silva, and W. Polifke. 2018. Simultaneous identification of transfer functions and combustion noise of a turbulent flame. J. Sound Vib. 422:432–52. doi:10.1016/j.jsv.2018.02.040.
  • Natanzon, M. S., and F. E. C. Culick. 2008. Combustion instability. Reston: American Institute of Aeronautics and Astronautics.
  • Nicoud, F., L. Benoit, C. Sensiau, and T. Poinsot. 2007. Acoustic modes in combustors with complex impedances and multidimensional active flames. Aiaa J. 45 (2):426–41. doi:10.2514/1.24933.
  • Ni, F., F. Nicoud, Y. Méry, and G. Staffelbach. 2018. Including flow–acoustic interactions in the Helmholtz computations of industrial combustors. AIAA J. 56 (12):4815–29. doi:10.2514/1.J057093.
  • Nori, V. N., and J. M. Seitzman. 2009. CH* chemiluminescence modeling for combustion diagnostics. Proc. Combust. Inst. 32 (1):895–903. doi:10.1016/j.proci.2008.05.050.
  • Palies, P., D. Durox, T. Schuller, and S. Candel. 2011. Experimental study on the effect of swirler geometry and swirl number on flame describing functions. Combust. Sci. Technol 183 (7):704–17. doi:10.1080/00102202.2010.538103.
  • Peracchio, A. A., and W. M. Proscia. 1999. Nonlinear heat-release/acoustic model for thermoacoustic instability in lean premixed combustors. J. Eng. Gas Turbines Power 121 (3):415–21. doi:10.1115/1.2818489.
  • Poinsot, T., and D. Veynante. 2005. Theoretical and numerical combustion. 2nd ed. Philadelphia: Edwards.
  • Prakash, S., Y. Neumeier, and B. Zinn. 2006. Investigation of mode shift dynamics of lean, premixed flames. In 44th AIAA aerospace sciences meeting and exhibit, 961. Reno, Nevada: Aerospace Research Central. doi:10.2514/6.2006-961.
  • Scarpato, A., L. Zander, R. Kulkarni, and B. Schuermans. 2016. Identification of multi-parameter flame transfer function for a reheat combustor. In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Combustion, Fuels and Emissions 4B: p. V04BT04A038. Seoul: The American Society of Mechanical Engineers Digital Collection doi: 10.1115/gt2016-57699.
  • Schmitt, T., G. Staffelbach, S. Ducruix, S. Gröning, J. S. Hardi, and M. Oschwald. 2017. Large-eddy simulations of a sub-scale liquid rocket combustor: Influence of fuel injection temperature on thermo-acoustic stability. In 7th European Conference for Aeronautics and Aerospace Sciences. Milan, Italy. doi: 10.13009/EUCASS2017-352.
  • Silva, C., I. Duran, N. Franck, and S. Moreau. 2014. Boundary conditions for the computation of thermo-acoustic modes in combustion chambers. Aiaa J. 52 (6):1180–93. doi:10.2514/1.J052114.
  • Sobol′, I. M. 2001. Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates. Math. Comput. Simul. 55 (1–3):271–80. doi:10.1016/S0378-4754(00)00270-6.
  • Stadlmair, N., and T. Sattelmayer. 2016. Measurement and analysis of flame transfer functions in a lean-premixed, swirl-stabilized combustor with water injection. In 54th AIAA Aerospace Sciences Meeting. San Diego: American Institute of Aeronautics and Astronautics. doi:10.2514/6.2016-1157.
  • Stow, S. R., and A. P. Dowling. 2004. Low-order modelling of thermoacoustic limit cycles. In ASME turbo expo 2004: Power for land, sea, and Air, turbo expo 2004, Vol. 1, 775–86. Vienna: The American Society of Mechanical Engineers Digital Collection. doi:10.1115/gt2004-54245.
  • Stow, S. R., and A. P. Dowling. 2008. A time-domain network model for nonlinear thermoacoustic oscillations. In ASME turbo expo 2008: Power for land, sea, and air. In Combustion, fuels and emissions, parts a and B, Vol. 3, 539–51. Berlin: The American Society of Mechanical Engineers Digital Collection. doi:10.1115/gt2008-50770.
  • Urbano, A., Q. Douasbin, L. Selle, G. Staffelbach, B. Cuenot, T. Schmitt, S. Ducruix, and S. Candel. 2017. Study of flame response to transverse acoustic modes from the LES of a 42-injector rocket engine. Proc. Combust. Inst. 36 (2):2633–39. doi:10.1016/j.proci.2016.06.042.
  • Wang, Y., C. H. Sohn, J. Bae, and Y. Yoon. 2021. Prediction of combustion instability by combining transfer functions in a model rocket combustor. Aerosp. Sci. Technol. 119:107202. doi:10.1016/j.ast.2021.107202.
  • Wolf, P., G. Staffelbach, L. Y. M. Gicquel, J.-D. Müller, and T. Poinsot. 2012. Acoustic and large eddy simulation studies of azimuthal modes in annular combustion chambers. Combust. Flame 159 (11):3398–413. doi:10.1016/j.combustflame.2012.06.016.
  • Xia, Y., D. Laera, W. P. Jones, and A. S. Morgans. 2019. Numerical prediction of the flame describing function and thermoacoustic limit cycle for a pressurised gas turbine combustor. Combust. Sci. Technol 191 (5–6):979–1002. doi:10.1080/00102202.2019.1583221.
  • Yang, D., and A. S. Morgans. 2018. Low-order network modeling for annular combustors exhibiting longitudinal and circumferential modes. In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Combustion, Fuels, and Emissions 4B: p. V04BT04A026. Oslo: The American Society of Mechanical Engineers Digital Collection. doi: 10.1115/gt2018-76506.