83
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of Swirl Number and Central Rod on Flow in a Lean Premixed Swirl Combustor

, &
Received 19 Jun 2023, Accepted 03 Nov 2023, Published online: 20 Nov 2023

References

  • Anacleto, P. M., E. C. Fernandes, M. V. Heitor, and S. I. Shtork. 2003. Swirl flow structure and flame characteristics in a model lean premixed combustor. Combust. Sci. Technol 175 (8):1369–88. doi:10.1080/00102200302354.
  • Ansys (2012). Ansys fluent theory guide.
  • Barbosa, S., G. Pilla, D. Lacoste, P. Scouflaire, S. Ducruix, C. Laux, and D. Veynante. 2015. Influence of nanosecond repetitively pulsed discharges on the stability of a swirled propane/air burner representative of an aeronautical combustor. Philos. Trans. A Math. Phys. Eng. Sci 373 (2048):20140335. doi:10.1098/rsta.2014.0335.
  • Candel, S., D. Durox, T. Schuller, J.-F. Bourgouin, and J. P. Moeck. 2014. Dynamics of swirling flames. Annu. Rev. Fluid Mech 46 (1):147–73. doi:10.1146/annurev-fluid-010313-141300.
  • Cavaliere, D., J. Kariuki, and E. Mastorakos. 2013. A comparison of the blow-off behaviour of swirl-stabilized premixed, non-premixed and spray flames. Flow Turbul. Combust. 91 (2):347–72. doi:10.1007/s10494-013-9470-z.
  • Center, O. S. (1987). Ohio supercomputer center. http://osc.edu/ark:/19495/f5s1ph73.
  • Claypole, T., and N. Syred. 1981. The effect of swirl burner aerodynamics on nox formation. Symp. (Int.) Combust. 18 (1):81–89. doi:10.1016/S0082-0784(81)80013-6.
  • Delabroy, O., E. Haile, F. Lacas, S. Candel, A. Pollard, A. Sobiesiak, and H. Becker. 1998. Passive and active control of nox in industrial burners. Exp. Therm. Fluid Sci. 16 (1):64–75. doi:10.1016/S0894-1777(97)10013-9.
  • Delabroy, O., F. Lacas, T. Poinsot, S. Candel, T. Hoffmann, J. Hermann, S. Gleis, and D. Vortmeyer. 1996. A study of nox reduction by acoustic excitation in a liquid fueled burner. Combust. Sci. Technol 119 (1–6):397–408. doi:10.1080/00102209608952007.
  • De Rosa, A., S. Peluso, B. Quay, and D. Santavicca. 2015. The effect of confinement on the structure and dynamic response of lean-premixed, swirl-stabilized flames. J. Eng. Gas Turbines Power 138 (6). doi:10.1115/1.4031885.
  • Durox, D., J. P. Moeck, J.-F. Bourgouin, P. Morenton, M. Viallon, T. Schuller, and S. Candel. 2013. Flame dynamics of a variable swirl number system and instability control. Combust. Flame 160 (9):1729–42. doi:10.1016/j.combustflame.2013.03.004.
  • Durox, D., K. Prieur, T. Schuller, and S. Candel. 2016. Different flame patterns linked with swirling injector interactions in an annular combustor. J. Eng. Gas Turbines Power 138 (10):101504. doi:10.1115/1.4033330.
  • Ebi, D., and N. Clemens. 2016. Experimental investigation of upstream flame propagation during boundary layer flashback of swirl flames. Combust. Flame 168:39–52. doi:10.1016/j.combustflame.2016.03.027.
  • Gatti, M., R. Gaudron, C. Mirat, L. Zimmer, and T. Schuller (2018). Impact of swirl and bluff-body on the transfer function of premixed flames. Proc. Com Inst 37 (4):5197–5204. doi:10.1016/j.proci.2018.06.148.
  • Guiberti, T. F., D. Durox, L. Zimmer, and T. Schuller. 2015. Analysis of topology transitions of swirl flames interacting with the combustor side wall. Combust. Flame 162 (11):4342–57. doi:10.1016/j.combustflame.2015.07.001.
  • Guo, S., J. Wang, W. Zhang, B. Lin, Y. Wu, S. Yu, G. Li, Z. Hu, and Z. Huang. 2019. Investigation on bluff-body and swirl stabilized flames near lean blowoff with PIV/PLIF measurements and les modelling. Appl. Therm. Eng. 160:114021. doi:10.1016/j.applthermaleng.2019.114021.
  • Gupta, A. K., M. J. Lewis, and S. Qi. 1998. Effect of swirl on combustion characteristics in premixed flames. J. Eng. Gas Turbines Power 120 (3):488–94. doi:10.1115/1.2818171.
  • Hanson, R. K., and S. Salimian. 1984. Survey of rate constants in the N/H/O System. In Combustion Chemistry, ed. W. C. Gardiner, 361–421. New York, NY: Springer. doi:10.1007/978-1-4684-0186-8_6.
  • Heeger, C., R. Gordon, M. Tummers, T. Sattelmayer, and A. Dreizler. 2010. Experimental analysis of flashback in lean premixed swirling flames: Upstream flame propagation. Exp. Fluids 49 (4):853–63. doi:10.1007/s00348-010-0886-0.
  • Helou, I. E., J. Foale, A. Giusti, J. A. Sidey, and E. Mastorakos. 2017. Experimental and numerical investigation of an ultra-low nox methane reactor. Enrgy Proced. 120:214–21. INFUB - 11th European Conference on Industrial Furnaces and Boilers, INFUB-11. doi:10.1016/j.egypro.2017.07.167.
  • Huang, Y., and V. Yang. 2004. Bifurcation of flame structure in a lean-premixed swirl-stabilized combustor: Transition from stable to unstable flame. Combust. Flame 136 (3):383–89. doi:10.1016/j.combustflame.2003.10.006.
  • Huang, Y., and V. Yang. 2005. Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor. Proc. Combust. Inst. 30 (2):1775–82. doi:10.1016/j.proci.2004.08.237.
  • Huang, Y., and V. Yang. 2009. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energ. Combust. 35 (4):293–364. doi:10.1016/j.pecs.2009.01.002.
  • Ji, J., and J. Gore. 2002. Flow structure in lean premixed swirling combustion. Proc. Combust. Inst. 29:861–67. doi:10.1016/S1540-7489(02)80110-9.
  • Johnson, M., D. Littlejohn, W. Nazeer, K. Smith, and R. Cheng. 2005. A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines. Proc. Combust. Inst. 30 (2):2867–74. doi:10.1016/j.proci.2004.07.040.
  • Kawamura, T., K. Asato, T. Mazaki, T. Hamaguchi, and H. Kayahara. 1979. Explanation of the blowoff of inverted flames by the area-increase concept. Combust. Flame 35:109–16. doi:10.1016/0010-2180(79)90014-2.
  • Kheirkhah, S., J. D. M. Cirtwill, P. Saini, K. Venkatesan, and A. M. Steinberg. 2017. Dynamics and mechanisms of pressure, heat release rate, and fuel spray coupling during intermittent thermoacoustic oscillations in a model aeronautical combustor at elevated pressure. Combust. Flame 185:319–34. doi:10.1016/j.combustflame.2017.07.017.
  • Kim, G. T., C. S. Yoo, S. H. Chung, and J. Park. 2020. Effects of non-thermal plasma on the lean blowout limits and co/nox emissions in swirl-stabilized turbulent lean-premixed flames of methane/air. Combust. Flame 212:403–14. doi:10.1016/j.combustflame.2019.11.024.
  • Komarek, T., and W. Polifke. 2010. Impact of swirl fluctuations on the flame response of a perfectly premixed swirl burner. J. Eng. Gas Turbines Power 132 (6). doi:10.1115/1.4000127.
  • Lacoste, D. A., J. P. Moeck, D. Durox, C. O. Laux, and T. Schuller. 2013. Effect of nanosecond repetitively pulsed discharges on the Dynamics of a Swirl-Stabilized Lean Premixed Flame. J. Eng. Gas Turbines Power 135 (10):101501. doi:10.1115/1.4024961.
  • Lapeyre, C. J., M. Marek, S. Philippe, R. Franck, D. Sebastien, and P. Thierry. 2017. Acoustically induced flashback in a staged swirl-stabilized combustor. Flow Turbul. Combust. 98 (1):265–82. doi:10.1007/s10494-016-9745-2.
  • Lebedev, A., A. Sekundov, and K. Yakubovskii. 2009. The effect of recirculation zone on the magnitude of nox emissions in a low-emission combustion chamber. High Temperat. 47 (3):452–56. doi:10.1134/S0018151X09030201.
  • Lefebvre, A., and D. Ballal (2010). Gas turbine combustion: Alternative fuels and emissions, (3rd ed.).
  • Lucca-Negro, O., and T. O’Doherty. 2001. Vortex breakdown: A review. Prog. Energ. Combust. 27 (4):431–81. doi:10.1016/S0360-1285(00)00022-8.
  • Maestro, D., and D. Lacoste. 2017. Large eddy simulation of nanosecond repetitively pulsed discharges for the Control of Thermoacoustic Instabilities. 4e Colloque du réseau d’INitiative en Combustion Avancée(INCA) 33:1–12.
  • Mallens, R. M. M., B. O. Loijenga, L. P. H. D. Goey, and P. J. M. Sonnemansb. 1997. Numerical and experimental study of lean m-and v-shaped flames. Combust. Sci. Technol 122 (1–6):331–44. doi:10.1080/00102209708935614.
  • Mansouri, Z., M. Aouissi, and T. Boushaki. 2016. Detached eddy simulation of high turbulent swirling reacting flow in a premixed model burner. Combust. Sci. Technol 188 (11–12):1777–98. doi:10.1080/00102202.2016.1211888.
  • Marchione, T., S. Ahmed, and E. Mastorakos. 2009. Ignition of turbulent swirling n-heptane spray flames using single and multiple sparks. Combust. Flame 156 (1):166–80. doi:10.1016/j.combustflame.2008.10.003.
  • Mercier, R., T. Guiberti, A. Chatelier, D. Durox, O. Gicquel, N. Darabiha, T. Schuller, and B. Fiorina. 2016. Experimental and numerical investigation of the influence of thermal boundary conditions on premixed swirling flame stabilization. Combust. Flame 171:42–58. doi:10.1016/j.combustflame.2016.05.006.
  • Michaud, M. G., P. R. Westmoreland, and A. S. Feitelberg. 1992. Chemical mechanisms of nox formation for gas turbine conditions. Symp. (Int.) Combust. 24 (1):879–87. doi:10.1016/S0082-0784(06)80105-0.
  • Nakod, P., R. Yadav, P. Rajeshirke, and S. Orsino. 2014. A comparative computational fluid dynamics study on flamelet-generated manifold and steady laminar flamelet modeling for turbulent flames. J. Eng. Gas Turbines Power 136 (8):081504. doi:10.1115/1.4026806.
  • Nogenmyr, K.-J., H. Cao, C. Chan, and R. Cheng. 2013. Effects of confinement on premixed turbulent swirling flame using large eddy simulation. Combust. Theory Modelling 17 (6):1003–19. doi:10.1080/13647830.2013.820842.
  • Nori, V. N., and J. M. Seitzman. 2009. Ch chemiluminescence modeling for combustion diagnostics. Proc. Combust. Inst. 32 (1):895–903. doi:10.1016/j.proci.2008.05.050.
  • Oijen, J. V., and L. D. Goey. 2000. Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol 161 (1):113–37. doi:10.1080/00102200008935814.
  • Palies, P., T. Schuller, D. Durox, L. Y. M. Gicquel, and S. Candel. 2011. Acoustically perturbed turbulent premixed swirling flames. Phys. Fluids 23 (3). doi:10.1063/1.3553276.
  • Patankar, S. (1980). Numerical heat transfer and fluid flow (1st ed.).
  • Patankar, S., and D. Spalding. 1972. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Tran. 15 (10):1787–806. doi:10.1016/0017-9310(72)90054-3.
  • Pathania, R., I. E. Helou, A. Skiba, R. Ciardiello, and E. Mastorakos. 2023. Lean blow-off of premixed swirl-stabilised flames with vapourised kerosene. Proc. Combust. Inst. 39 (2):2229–38. doi:10.1016/j.proci.2022.10.006.
  • Peters, N. 1999. The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech 384:107–32. doi:10.1017/S0022112098004212.
  • Pilla, G. L., D. A. Lacoste, D. Veynante, and C. O. Laux. 2008. Stabilization of a swirled propane–air flame using a nanosecond repetitively pulsed plasma. IEEE Trans. Plasma Sci. 36 (4):940–41. doi:10.1109/TPS.2008.927343.
  • Ramaekers, W. J. S., B. A. Albrecht, J. A. V. Oijen, L. P. H. de Goey, and R. G. L. M. Eggels (2005). The application of Flamelet Generated Manifolds in modelling of turbulent partially-premixed flames. Proceedings of the Fluent Benelux User Group Meeting, (pp. 3D). Belgium, Château de Limelette.
  • Renaud, A., S. Ducruix, P. Scouflaire, and L. Zimmer. 2015. Flame shape transition in a swirl stabilised liquid fueled burner. Proc. Combust. Inst. 35 (3):3365–72. doi:10.1016/j.proci.2014.07.012.
  • Robert, R. T., W. Changlie, and C. Kyung. 2003. Low nox lean direct wall injection combustion concept.
  • Sabatino, F., T. Guiberti, W. Boyette, W. Roberts, J. Moeck, and D. Lacoste. 2018. Effect of pressure on the transfer functions of premixed methane and propane swirl flames. Combust. Flame 193:272–82. doi:10.1016/j.combustflame.2018.03.011.
  • Sabatino, F., T. F. Guiberti, J. P. Moeck, W. L. Roberts, and D. A. Lacoste. 2020. Fuel and equivalence ratio effects on transfer functions of premixed swirl flames. J. Propul. Power 36 (2):271–84. doi:10.2514/1.B37537.
  • Sabatino, F. D., D. A. Lacoste, and W. L. Roberts. 2017. A detailed characterization of a high pressure experimental apparatus for flame dynamic studies. 10th US National Combustion Meeting, College Park, Maryland, USA, 1–6.
  • Samiran, N. A., C. T. Chong, J.-H. Ng, M.-V. Tran, H. C. Ong, A. Valera-Medina, W. W. F. Chong, and M. N. Mohd Jaafar. 2019. Experimental and numerical studies on the premixed syngas swirl flames in a model combustor. Int. J. Hydrog Energy 44 (44):24126–39. doi:10.1016/j.ijhydene.2019.07.158.
  • Schmittel, P., B. Günther, B. Lenze, W. Leuckel, and H. Bockhorn. 2000. Turbulent swirling flames: Experimental investigation of the flow field and formation of nitrogen oxide. Proc. Combust. Inst. 28 (1):303–09. doi:10.1016/S0082-0784(00)80224-6.
  • Schönborn, A., P. Sayad, and J. Klingmann. 2014. Influence of precessing vortex core on flame flashback in swirling hydrogen flames. Int. J. Hydrog Energy 39 (35):20233–41. doi:10.1016/j.ijhydene.2014.10.005.
  • Shahsavari, M., M. Farshchi, M. H. Arabnejad, and B. Wang. 2023. The role of flame–flow interactions on lean premixed lifted flame stabilization in a low swirl flow. Combust. Sci. Technol 195 (5):897–922. doi:10.1080/00102202.2021.1976766.
  • Sheen, H. J., W. J. Chen, and S. Y. Jeng. 1996. Recirculation zones of unconfined and confined annular swirling jets. Aiaa J. 34 (3):572–79. doi:10.2514/3.13106.
  • Sheen, H., W. Chen, S. Jeng, and T. Huang. 1996. Correlation of swirl number for a radial-type swirl generator. Exp. Therm. Fluid Sci. 12 (4):444–51. doi:10.1016/0894-1777(95)00135-2.
  • Shih, W.-P., J. G. Lee, and D. A. Santavicca. 1996. Stability and emissions characteristics of a lean premixed gas turbine combustor. Symp. (Int.) Combust. 26 (2):2771–78. doi:10.1016/S0082-0784(96)80115-9.
  • Shih, T.-H., W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu. 1995. A new k- eddy viscosity model for high Reynolds number turbulent flows. Comput. Fluids 24 (3):227–38. doi:10.1016/0045-7930(94)00032-T.
  • Sidey, J. A., and E. Mastorakos. 2018. Stabilisation of swirling dual-fuel flames. Exp. Therm. Fluid Sci. 95:65–72. Tenth Mediterranean Combustion Symposium. doi:10.1016/j.expthermflusci.2018.02.007.
  • Smith, G. P., D. M. Golden, M. Frenklach, and N. M. Moriarty (2000). Gri-mech 3.0. http://www.me.berkeley.edu/gri_mech/.
  • Stöhr, M., I. Boxx, C. D. Carter, and W. Meier. 2012. Experimental study of vortex-flame interaction in a gas turbine model combustor. Combust. Flame Special Issue on Turbulent Combustion 159 (8):2636–49. doi:10.1016/j.combustflame.2012.03.020.
  • Strakey, P. A., D. S. Woodruff, T. C. Williams, and R. W. Schefer. 2008. Oh-planar fluorescence measurements of pressurized, hydrogen premixed flames in the simval combustor. Aiaa J. 46 (7):1604–13. doi:10.2514/1.32640.
  • Syred, N., and J. Beér. 1974. Combustion in swirling flows: A review. Combust. Flame 23 (2):143–201. doi:10.1016/0010-2180(74)90057-1.
  • Takagi, T., and T. Okamoto. 1981. Characteristics of combustion and pollutant formation in swirling flames. Combust. Flame 43:69–79. doi:10.1016/0010-2180(81)90007-9.
  • Yegian, D., and R. Cheng. 1998. Development of a lean premixed low-swirl burner for low nox practical applications. Combust. Sci. Technol 139 (1):207–27. doi:10.1080/00102209808952088.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.