60
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study on the catalysis of copper-based compounds on coal spontaneous combustion and its mechanism

, , , , &
Received 08 Oct 2023, Accepted 23 Nov 2023, Published online: 10 Dec 2023

References

  • Chen, H. F., X. Z. Sha, Y. Q. Xu, Y. Z. Hang, and J. S. Gao, G. F. Yin, X. Z. Ni, Q. Q. Wang, and J. R. Bai. 1993. Effect of catalyst on ignition characteristics of coal-II. Effect of different catalysts on coal catalytic ignition. J. Fuel Chem. Technol. 1993 (2):180–184.
  • Chen, X., T. Ma, X. Zhai, and C. Lei. 2019. Thermogravimetric and infrared spectroscopic study of bituminous coal spontaneous combustion to analyze combustion reaction kinetics. Thermochim. Acta 676:84–93. doi:10.1016/j.tca.2019.04.002.
  • Chen, Y., M. Mastalerz, and A. Schimmelmann. 2012. Characterization of chemical functional groups in macerals across different coal ranks via micro-ftir spectroscopy. Int. J. Coal Geol. 104:22–33. doi:10.1016/j.coal.2012.09.001.
  • Deng, B. L., L. Qiao, Y. S. Wang, X. G. Mu, C. B. Deng, and Z. X. Jin. 2023. Study on the spontaneous combustion and oxidation mechanism of low molecular ketone compounds in coal. Fuel 353:129256. doi:10.1016/j.fuel.2023.129256.
  • Deng, C. B., L. Qiao, X. F. Wang, F. W. Dai, and X. Zhang. 2018. Spontaneous combustion characteristics and infrared analysis of soaked lignite. China Safety Sci. J. 28 (8):105–10. doi:10.16265/j.cnki.issn1003-3033.2018.08.018.
  • Deng, J., C. K. Lei, Y. Xiao, K. Cao, L. Ma, W. F. Wang, and W. B. Lai. 2018. Determination and prediction on “three zones” of coal spontaneous combustion in a gob of fully mechanized caving face. Fuel 211:458–70. doi:10.1016/j.fuel.2017.09.027.
  • Deng, J., J. Y. Zhao, Y. N. Zhang, and R. L. Geng. 2014. Study on coal spontaneous combustion characteristic temperature of growth rate analysis. Procedia. Eng. 84:796–805. doi:10.1016/j.proeng.2014.10.498.
  • Feng, J., W. Y. Li, and K. C. Xie. 2002. Study on coal structure by Fourier infrared spectroscopy. J. China Univ. Min. Technol. 5:25–29.
  • Gao, J., R. Z. Chu, X. L. Meng, J. Y. Yang, and W. T. Lou. 2020. Synergistic mechanism of CO2 and active functional groups during low-temperature oxidation of lignite. Fuel 278:118407. doi:10.1016/j.fuel.2020.118407.
  • Gong, X., Z. Guo, and Z. Wang. 2010. Variation on anthracite combustion efficiency with CeO2 and Fe2O3 addition by differential thermal analysis (DTA). Energy 35 (2):506–11. doi:10.1016/j.energy.2009.10.017.
  • Hu, W., H. Wang, W. Y. Liu, and X. J. Cheng. 2020. Comparative study of experimental testing methods for characterization parameters of coal spontaneous combustion. Fuel 275:117880. doi:10.1016/j.fuel.2020.117880.
  • Ju, J. T., L. W. Liang, C. H. Zhang, S. P. Yang, J. M. Gao, and Z. X. Shi. 2008. Study on combustion catalyst mixed in pulverized coal used for blast furnace injection. Res. Iron Steel 2008 (3):36–39.
  • Kandasamy, J., V. K. Mustafa, and G. Iskender. 2017. Pyrolysis, combustion and gasification studies of different sized coal particles using TGA-MS. Appl. Therm. Eng. 125:1446–55. doi:10.1016/j.applthermaleng.2017.07.128.
  • Kandasamy, J., V. K. Mustafa, and G. Iskender. 2020. Combustion mechanism and model free kinetics of different origin coal samples: Thermal analysis approach. Energy 204:117905. doi:10.1016/j.energy.2020.117905.
  • Li, X., B. Ma, L. Xu, Z. Luo, and K. Wang. 2007. Catalytic effect of metallic oxides on combustion behavior of high ash coal. Energy & Fuels 21 (5):2669–72. doi:10.1021/ef070054v.
  • Ma, B. G., X. G. Li, L. Xu, K. Wang, and X. Wang. 2006. Investigation on catalyzed combustion of high ash coal by thermogravimetric analysis. Thermochim. Acta 445 (1):19–22. doi:10.1016/j.tca.2006.03.021.
  • Miyazaki, T., N. Tokubuchi, M. Arita, M. Inoue, and I. Mochida. 1997. Catalytic Combustion of Carbon by Alkali Metal Carbonates supported on perovskite-type oxide. Energy & Fuels 11 (4):832–36. doi:10.1021/ef960185o.
  • Prabhakaran, S. S., G. Swaminathan, and V. V. Joshi. 2022. Combustion and pyrolysis kinetics of Australian lignite coal and validation by artificial neural networks. Energy 242:122949. doi:10.1016/j.energy.2021.122949.
  • Prakash, S. 1980. Mode of occurrence of trace elements in coal. Rourkela: National Institute of Technology.
  • Qi, X. Y. 2011. Oxidation and self-reaction process of reactive groups in coal. 2011. J. Coal Sci. 36 (12):2133–34. doi:10.13225/j.cnki.jccs.2011.12.032.
  • Qiao, L., C. B. Deng, B. Lu, Y. S. Wang, X. F. Wang, H. Z. Deng, and X. Zhang. 2022. Study on calcium catalyzes coal spontaneous combustion. Fuel 307 (5):121884. doi:10.1016/j.fuel.2021.121884.
  • Shen, F. M., X. F. Peng, and Q. J. Zhao. 1998. The effect of MnO2 on the combustion-supporting efficiency of pulverized coal its mechanism. Iron & Steel 1998 (9):3–5. doi:10.3321/j.issn:0449-749X.1998.09.001.
  • Song, J. J., J. Deng, J. Y. Zhao, Y. N. Zhang, C. Wang, and C.-M. Shu. 2021. Critical particle size analysis of gas emission under high-temperature oxidation of weathered coal. Energy 214 (art. no. 118995):118995. doi:10.1016/j.energy.2020.118995.
  • Tang, Y. B. 2015. The influences of manganese and phosphorus on the low-temperature oxidation of coal. Int. J. Coal Prep. Util. 35 (2):63–75. doi:10.1080/19392699.2014.964867.
  • Xu, T. 2017. Heat effect of the oxygen-containing functional groups in coal during spontaneous combustion processes. Adv. Powder Technol. 28 (8):1841–48. doi:10.1016/j.apt.2017.01.015.
  • Zhang, B., Y. Q. Lin, C. X. Tao, and Y. L. Zhang. 2020. Study on the influence of several metal compounds on the combustion characteristics of bituminous coal. China Cem. 2020 (12):78–82. doi:10.3969/j.issn.1671-8321.2020.12.021.
  • Zhang, D. K., and W. Sujanti. 1999. The effect of exchangeable cations on low-temperature oxidation and self-heating of a Victorian brown coal. Fuel 78 (10):1217–24. doi:10.1016/S0016-2361(99)00036-8.
  • Zhang, J. L., Y. T. Tang, G. W. Wang, and H. B. Zuo. 2013. Effect of CeO2 and its composite catalyst on combustion of pulverized coal. Iron & Steel 48 (9):81–86. doi:10.13228/j.boyuan.issn0449-749x.2013.09.002.
  • Zhang, X., B. Lu, J. Zhang, X. Fu, H. Z. Deng, L. Qiao, C. Ding, and F. Gao. 2023. Experimental and simulation study on hydroxyl group promoting low-temperature oxidation of active groups in coal. Fuel 340:127501. doi:10.1016/j.fuel.2023.127501.
  • Zhao, J. Y., J. Deng, L. Chen, T. Wang, J. J. Song, Y. N. Zhang, C.-M. Shu, and Q. Zeng. 2019. Correlation analysis of the functional groups and exothermic characteristics of bituminous coal molecules during high-temperature oxidation. Energy 181:136–47. doi:10.1016/j.energy.2019.05.158.
  • Zhou, B. Z., S. Q. Yang, W. M. Yang, X. Y. Jiang, W. X. Song, J. W. Cai, Q. Xu, and Z. Q. Tang. 2022. Variation characteristics of active groups and macroscopic gas products during low-temperature oxidation of coal under the action of inert gases N2 and CO2. Fuel 307:121893. doi:10.1016/j.fuel.2021.121893.
  • Zhou, C. S., Y. L. Zhang, J. Wang, J. F. Wang, and J. M. Wu. 2020. Study on Intrinsic Relationship between coal Mass change and heat evolution during different stages of coal spontaneous combustion. Combust. Sci. Technol. 193 (14):1–19. doi:10.1080/00102202.2020.1744576.
  • Zhou, P. R. 2014. Infrared spectroscopy study on changes of coal low-temperature oxidation structure. Coal Convers. 37 (1):15–18. doi:10.3969/j.issn.1004-4248.2014.01.004.
  • Zhu, C., and Y. Jiang. 2013. Catalytic combustion effects and distributed activation energy model of TF coal. Coal Convers. 36 (3):42–47. doi:10.3969/j.issn.1004-4248.2013.03.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.