100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ethanol Inhomogeneous Lean Combustion Under Different Ambient Temperatures and Pressures with Hydrogen Enrichment

, , , &
Received 10 Sep 2023, Accepted 11 Dec 2023, Published online: 22 Dec 2023

References

  • Abo-Amsha, K., and N. Chakraborty. 2023. Surface density function and its evolution in homogeneous and inhomogeneous mixture n-heptane MILD combustion. Combust. Sci. Technol 195 (7):1483–508. doi:10.1080/00102202.2023.2182197.
  • Aleiferis, P. G., A. M. K. P. Taylor, K. Ishii, and Y. Urata. 2004. The nature of early flame development in a lean-burn stratified-charge spark-ignition engine. Combust. Flame 136 (3):283–302. doi:10.1016/j.combustflame.2003.08.011.
  • Arslan, E., M. R. Atelge, N. Kahraman, and S. Ünalan. 2022. A study on the effects of nanoparticle addition to a diesel engine operating in dual fuel mode. Fuel 326:124847. doi:10.1016/j.fuel.2022.124847.
  • Atelge, M. R. 2022. Experimental study of a blend of diesel/Ethanol/n-butanol with hydrogen additive on combustion and emission and exegetic evaluation. Fuel 325:124903. doi:10.1016/j.fuel.2022.124903.
  • Atelge, M. R., E. Arslan, D. Krisa, R. R. Al-Samaraae, S. Abut, A. E. A. Sebahattin Ünalan, A. E. Atabani, N. Kahraman, S. O. Akansu, M. Kaya, et al. 2022. Comparative investigation of multi-walled carbon nanotube modified diesel fuel and biogas in dual fuel mode on combustion, performance, and emission characteristics. Fuel 313:123008. doi:10.1016/j.fuel.2021.123008.
  • Bao, J., P. Qu, H. Wang, C. Zhou, L. Zhang, and C. Shi. 2022. Implementation of various bowl designs in an HPDI natural gas engine focused on performance and pollutant emissions. Chemosphere 303:135275. doi:10.1016/j.chemosphere.2022.135275.
  • Bao, J., H. Wang, R. Wang, Q. Wang, L. Di, and C. Shi. 2023. Comparative experimental study on macroscopic spray characteristics of various oxygenated diesel fuels. Energy Sci. Eng. 11 (5):1579–88. doi:10.1002/ese3.1409.
  • Bartolucci, L., S. Cordiner, V. Mulone, and V. Rocco. 2018. Natural gas partially stratified lean combustion: Analysis of the enhancing mechanisms into a constant volume combustion chamber. Fuel 211:737–53. doi:10.1016/j.fuel.2017.09.100.
  • Benajes, J., S. Molina, A. García, J. Monsalve-Serrano, and R. Durrett. 2014. Performance and engine-out emissions evaluation of the double injection strategy applied to the gasoline partially premixed compression ignition spark assisted combustion concept. Appl. Energ. 134:90–101. doi:10.1016/j.apenergy.2014.08.008.
  • Boeck, L. R., J. Hasslberger, and T. Sattelmayer. 2014. Flame acceleration in hydrogen/air mixtures with concentration gradients. Combust. Sci. Technol 186 (10–11):1650–61. doi:10.1080/00102202.2014.935619.
  • Catapano, F., S. Di Iorio, M. Lazzaro, P. Sementa, and B. Maria Vaglieco. (2013) Characterization of ethanol blends combustion processes and soot formation in a GDI optical engine. SAE Technical Paper Series.
  • Chakraborty, N., E. Mastorakos, and R. S. Cant. 2007. Effects of turbulence on spark ignition in Inhomogeneous mixtures: A direct numerical simulation (Dns) study. Combust. Sci. Technol 179 (1–2):293–317. doi:10.1080/00102200600809555.
  • Costa, M., U. Sorge, S. Merola, A. Irimescu, M. La Villetta, and V. Rocco. 2016. Split injection in a homogeneous stratified gasoline direct injection engine for high combustion efficiency and low pollutants emission. Energy 117:405–15. doi:10.1016/j.energy.2016.03.065.
  • Dai, H., J. Wang, X. Cai, S. Su, H. Zhao, and Z. Huang. 2022. Measurement and scaling of turbulent burning velocity of ammonia/methane/air propagating spherical flames at elevated pressure. Combust. Flame 242:112183. doi:10.1016/j.combustflame.2022.112183.
  • Dalla Nora, M., T. D. M. Lanzanova, and H. Zhao. 2016. Effects of valve timing, valve lift and exhaust backpressure on performance and gas exchanging of a two-stroke GDI engine with overhead valves. Energy Convers. Manage. 123:71–83.
  • Fan, L., G. Li, Z. Han, and D. Reitz Rolf (1999) Modeling fuel preparation and stratified combustion in a gasoline direct injection engine. SAE Technical Paper Series.
  • Fansler, T. D., D. L. Reuss, V. Sick, and R. N. Dahms. 2015. Invited review: Combustion instability in spray-guided stratified-charge engines: A review. Int. J. Engine Res. 16 (3):260–305. doi:10.1177/1468087414565675.
  • Feng, Z., C. Zhan, C. Tang, K. Yang, and Z. Huang. 2016. Experimental investigation on spray and atomization characteristics of diesel/gasoline/ethanol blends in high pressure common rail injection system. Energy 112:549–61. doi:10.1016/j.energy.2016.06.131.
  • Filho, S., F. Luiz, G. Kuenne, M. Chrigui, A. Sadiki, and J. Janicka. 2017. A consistent artificially thickened flame approach for spray combustion using LES and the FGM chemistry reduction method: Validation in lean partially pre-vaporized flames. Combust. Flame 184:68–89. doi:10.1016/j.combustflame.2017.05.031.
  • Ge, R., E. Hu, X. Yao, C. Tang, and Z. Huang. 2024. Ethanol stratified ultra-lean combustion with hydrogen enrichment in a constant volume vessel. Fuel 357:129638. doi:10.1016/j.fuel.2023.129638.
  • Greenwood, J. B., P. A. Erickson, J. Hwang, and E. A. Jordan. 2014. Experimental results of hydrogen enrichment of ethanol in an ultra-lean internal combustion engine. Int. J. Hydrog Energy 39 (24):12980–90. doi:10.1016/j.ijhydene.2014.06.030.
  • Huang, H.-W., and Y. Zhang. 2008. Flame colour characterization in the visible and infrared spectrum using a digital camera and image processing. Meas. Sci. Technol. 19 (8):085406. doi:10.1088/0957-0233/19/8/085406.
  • Hwang, J., C. Bae, J. Park, W. Choe, J. Cha, and S. Woo. 2016. Microwave-assisted plasma ignition in a constant volume combustion chamber. Combust. Flame 167:86–96. doi:10.1016/j.combustflame.2016.02.023.
  • Law, C. K. 2006. Combustion physics. New York: Cambridge University Press.
  • Lee, S., G. Kim, and C. Bae. 2021. Lean combustion of stratified hydrogen in a constant volume chamber. Fuel 301:121045. doi:10.1016/j.fuel.2021.121045.
  • Lei, Y., Y. Li, T. Qiu, Y. Li, Y. Wang, C. Zhang, J. Liu, M. Ding, X. Liu, and G. Peng. 2021. Effects of high-pressure methane jet on premixed ignited flame in constant-volume bomb. Energy 220:119695. doi:10.1016/j.energy.2020.119695.
  • Li, Y., X. Zhang, Y. Wang, and J. Sun. 2023. Effect of inhomogeneous methane-air mixtures on combustion characteristics in a constant volume combustion chamber. Fuel 331:125960. doi:10.1016/j.fuel.2022.125960.
  • Rotondi, R., and G. Bella. 2006. Gasoline direct injection spray simulation. Int. J. Therm. Sci. 45 (2):168–79. doi:10.1016/j.ijthermalsci.2005.06.001.
  • Saha, K., S. Som, M. Battistoni, Y. Li, E. Pomraning, and P. K. Senecal. 2016. Numerical investigation of two-phase flow evolution of in- and near-nozzle regions of a gasoline direct injection engine during needle transients. SAE Int. J. Engines 9 (2):1230–40. doi:10.4271/2016-01-0870.
  • Sekar, D., D. Ilangovan, M. I. Taipabu, K. Viswanathan, and W. Wu. 2023. Influence of ethanol blended diesel enriched with hydroxy gas in dual-fuel mode on common rail direct injection engine. Energies 16 (17):6393. doi:10.3390/en16176393.
  • Senecal, P. K., E. Pomraning, K. J. Richards, and S. Som. 2014. Grid-convergent spray models for internal combustion engine computational fluid dynamics simulations. J. Energy Res. Technol 136 (1). doi:10.1115/1.4024861.
  • Shi, C., S. Chai, L. Di, C. Ji, Y. Ge, and H. Wang. 2023. Combined experimental-numerical analysis of hydrogen as a combustion enhancer applied to Wankel engine. Energy 263:125896. doi:10.1016/j.energy.2022.125896.
  • Taipabu, M. I., K. Viswanathan, and W. Wu. 2023. Process design and optimization of green processes for the production of hydrogen and urea from glycerol. Int. J. Hydrog Energy 48 (63):24212–41. doi:10.1016/j.ijhydene.2023.03.163.
  • Thiyagarajan, S., E. G. Varuvel, V. Karthickeyan, A. Sonthalia, G. Kumar, C. G. Saravanan, B. Dhinesh, and A. Pugazhendhi. 2022. Effect of hydrogen on compression-ignition (CI) engine fueled with vegetable oil/biodiesel from various feedstocks: A review. Int. J. Hydrog Energy 47 (88):37648–67. doi:10.1016/j.ijhydene.2021.12.147.
  • Turquand d’Auzay, C., V. Papapostolou, S. F. Ahmed, and N. Chakraborty. 2019. Effects of turbulence intensity and biogas composition on the localized forced ignition of turbulent mixing layers. Combust. Sci. Technol 191 (5–6):868–97. doi:10.1080/00102202.2019.1576651.
  • Viswanathan, K., S. Abbas, and W. Wu. 2022. Syngas analysis by hybrid modeling of sewage sludge gasification in downdraft reactor: Validation and optimization. Waste Manage. (Oxford) 144:132–43. doi:10.1016/j.wasman.2022.03.018.
  • Wang, B., Y. Jiang, P. Hutchins, T. Badawy, H. Xu, X. Zhang, A. Rack, and P. Tafforeau. 2017. Numerical analysis of deposit effect on nozzle flow and spray characteristics of GDI injectors. Appl. Energ. 204:1215–24. doi:10.1016/j.apenergy.2017.03.094.
  • Yoo, C. S., T. Lu, J. H. Chen, and C. K. Law. 2011. Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume: Parametric study. Combust. Flame 158 (9):1727–41. doi:10.1016/j.combustflame.2011.01.025.
  • Zhan, C., S. Tong, C. Tang, and Z. Huang. 2020. The spray vaporization characteristics of gasoline/diethyl ether blends at sub-and super-critical conditions. Appl. Therm. Eng. 164:114453. doi:10.1016/j.applthermaleng.2019.114453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.