115
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design Optimization of an Improved Mud Cookstove Using Computational Fluid Dynamics

, ORCID Icon, , ORCID Icon, &
Received 20 Jul 2023, Accepted 08 Feb 2024, Published online: 20 Feb 2024

References

  • Agenbroad, J., M. DeFoort, A. Kirkpatrick, and C. Kreutzer. 2011a. A simplified model for understanding natural convection driven biomass cooking stoves-part 1: Setup and baseline validation. Energy. Sustain. Dev. 15 (2):160–68. Elsevier B.V. doi:10.1016/j.esd.2011.04.004.
  • Agenbroad, J., M. DeFoort, A. Kirkpatrick, and C. Kreutzer. 2011b. A simplified model for understanding natural convection driven biomass cooking stoves-part 2: With cook piece operation and the dimensionless form. Energy. Sustain. Dev. 15 (2):169–75. Elsevier B.V. doi:10.1016/j.esd.2011.04.002.
  • Ahmad, R., Y. Zhou, C. Liang, L. Gang, N. Zhao, A. Abbas, Y. Fan, L. Li, J. Gong, D. Wang, et al. 2022. Comparative evaluation of thermal and emission performances for improved commercial coal-fired stoves in China. RSC. Adv 12 (32):20886–96. doi:10.1039/D2RA03364J.
  • Alessandro, P., M. Rafi Malik, F. Contino, A. Cuoci, and B. B. Dally. 2016. Extension of the eddy dissipation concept for turbulence/chemistry interactions to MILD combustion. Fuel 163 (January):98–111. Elsevier Ltd. doi:10.1016/j.fuel.2015.09.020.
  • Ali, S., R. Mehrabian, R. Scharler, G. M. Goldin, and I. Obernberger. 2014. Development of a gas phase combustion model suitable for low and high turbulence conditions. Fuel 126 (June):177–87. Elsevier Ltd. doi:10.1016/j.fuel.2014.02.040.
  • Ali, H., and T. Tang Jia Wei. 2017. CFD study of an improved biomass cookstove with reduced emission and improved heat transfer characteristics. J. Clean Energy Technol. 5 (6):427–32. doi:10.18178/JOCET.2017.5.6.410.
  • Anamol, P., B. Sullivan, P. Means, J. D. Posner, and J. C. Kramlich. 2019. Predicting and analyzing the performance of biomass-burning natural draft rocket cookstoves using computational fluid dynamics. Biomass. Bioenergy 131 (October):105402. Elsevier Ltd. doi:10.1016/j.biombioe.2019.105402.
  • Ankit, G., A. N. V. Mulukutla, S. Gautam, W. TaneKhan, S. S. Waghmare, and N. K. Labhasetwar. 2020. Development of a practical evaluation approach of a typical biomass cookstove. Environ. Technol. Innovation 17 (February):100613. doi:10.1016/j.eti.2020.100613.
  • Ansys Inc. 2021. Ansys fluent theory guide. https://dl.cfdexperts.net/cfd_resources/Ansys_Documentation/Fluent/Ansys_Fluent_Theory_Guide.pdf.
  • Baldwin, S. F. 1987. Biomass stoves: Engineering design, development, and dissemination. Volunteers in technical assistance. Arlington, VA.
  • Ballard-Tremeer, G., and H. H. Jawurek. 1996. Comparison of five rural, wood-burning cooking devices: Efficiencies and emissions. Biomass. Bioenergy 11 (5):419–30. doi:10.1016/S0961-9534(96)00040-2.
  • Barpatragohain, R., B. Niyarjyoti, and P. D. Partha. 2021. Thermal performance evaluation of an improved biomass cookstove for domestic applications. In Proceedings of International Conference on Thermofluids, ed. S. Revankar, S. Sen, and D. Sahu, 579–90. Lecture Notes in Mechanical Engineering. Singapore: Springer. doi:10.1007/978-981-15-7831-1_54.
  • Bielecki, C., and G. Wingenbach. 2014. Rethinking improved cookstove diffusion programs: A case study of social perceptions and cooking choices in rural Guatemala. Energy. Policy 66 (March):350–58. doi:10.1016/j.enpol.2013.10.082.
  • Bordoloi, H., P. P. Dutta, and R. J. B. Gohain. 2022. Modelling of an improved biomass cook stove for rural application. In Tailored Functional Materials, ed. K. Mukherjee, R. K. Layek, and D. De, 171–83. Springer Proceedings in Materials. Singapore: Springer Nature. doi:10.1007/978-981-19-2572-6_13.
  • Budya, H., and M. Yasir Arofat. 2011. Providing cleaner energy access in Indonesia through the megaproject of kerosene conversion to LPG. Energy. Policy 39 (12):7575–86. doi:10.1016/j.enpol.2011.02.061.
  • Bureau of Indian Standards. 2013. Indian standard on portable solid bio-mass cookstove (chulha first revision). Is 13152 (part 1). https://www.services.bis.gov.in/php/BIS_2.0/bisconnect/standard_review/Standard_review/Isdetails?ID=MTI5.
  • Burnham-Slipper, H., M. J. Clifford, and S. J. Pickering. 2007. Proceedings of the 5th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT2007), 1–4 July 2007, Sun City, South Africa.
  • Bussmann, P., and K. Krishna Prasad. 1982. Model predictions of temperature and velocity profiles in turbulent diffusion buoyant flames. In Proceeding of International Heat Transfer Conference 7, 401–06. Munich, Germany: Begellhouse. doi:10.1615/IHTC7.830.
  • Bussmann, P., and K. Krishna Prasad. 1986. Parameter analysis of a simple woodburning cookstove. In Proceeding of International Heat Transfer Conference 8, 3085–90. San Francisco, USA: Begellhouse. doi:10.1615/IHTC8.4540.
  • Chaney, J., H. Liu, and L. Jinxing. 2012. An overview of CFD modelling of small-scale fixed-bed biomass pellet boilers with preliminary results from a simplified approach. Energy Convers. Manage. 63:149–56. doi:10.1016/j.enconman.2012.01.036.
  • Chen, W., Y. Ren, L. Zhang, and P. Roman Scheller. 2019. Numerical simulation of steel and argon gas two-phase flow in continuous casting using LES + VOF + DPM model. JOM 71 (3):1158–68. doi:10.1007/s11837-018-3255-8.
  • Clean Cooking Alliance and ENEA Consulting. 2019. Scaling LPG for cooking in developing markets: Insights from Tanzania. Washington DC: Clean Cooking Alliance.
  • Commeh, M. K., A. Agyei-Agyemang, P. Oppong Tawiah, and B. Atribawuni Asaaga. 2022. CFD analysis of a flat bottom institutional cookstove. Scientific. African 16:e01117. Elsevier B.V. doi:10.1016/j.sciaf.2022.e01117.
  • Čukić, I., C. Kypridemos, A. W. Evans, D. Pope, and E. Puzzolo. 2021. Towards sustainable development goal 7 ‘universal access to clean modern energy’: National strategy in Rwanda to scale clean cooking with bottled gas. Energies 14 (15):4582. doi:10.3390/en14154582.
  • Date, A. 1988. Investigation of CTARA wood-burning stove. Part II. Analytical investigation. Sadhana 13 (4):295–317. doi:10.1007/BF02759890.
  • Dixon, T. F., A. P. Mann, F. Plaza, and W. N. Gilfillan. 2005. Development of advanced technology for biomass combustion—CFD as an essential tool. Fuel 84 (10):1303–11. doi:10.1016/j.fuel.2004.09.024.
  • Dutta, P. P., R. Borpatra Gohain, and P. Protim Dutta. 2023. Performance assessment of an efficient biomass fired cook stove as a standby unit for community cooking. Biomass Convers. Biorefin. 13 (13):11609–20. doi:10.1007/s13399-022-02745-1.
  • Echekki, T., and E. Mastorakos eds. 2011. Turbulent combustion modeling, Vol. 95. Springer Netherlands. 10.1007/978-94-007-0412-1.
  • Gist, R. 2016. Heart of the hearth: Making the popular clean, not the clean popular - technology research, development, and tools for clean biomass cookstoves. DOE-BIOLITE–06088, 1337926. doi:10.2172/1337926.
  • Gist, R., V. Iyer, and V. Berrueta. 2015. Heart of the hearth: Making the popular clean, not the clean popular heart of the hearth: Making the popular clean, not the clean popular. Golden CO: U.S. Department of Energy.
  • Gómez, M. A., J. Porteiro, D. Patiño, and J. L. Míguez. 2014. CFD modelling of thermal conversion and packed bed compaction in biomass combustion. Fuel 117 (PART A):716–32. doi:10.1016/j.fuel.2013.08.078.
  • Gould, C. F., and J. Urpelainen. 2018. LPG as a clean cooking fuel: Adoption, use, and impact in rural India. Energy. Policy 122 (November):395–408. doi:10.1016/j.enpol.2018.07.042.
  • Gusain, P. P. S. 1990. Cooking energy in India. In Cooking energy in India, Vikas Publishing House Private Limited. https://www.cabdirect.org/cabdirect/abstract/19911898205.
  • Hasse, C., P. Debiagi, X. Wen, K. Hildebrandt, M. Vascellari, and T. Faravelli. 2021. Advanced modeling approaches for CFD simulations of coal combustion and gasification. Prog. Energy Combust. Sci. 86 (September):100938. doi:10.1016/j.pecs.2021.100938.
  • Health Effects Institute. 2020. State of global air 2020. A special report on global exposure to air pollution and its health impacts. Boston, MA. https://www.stateofglobalair.org/.
  • Husain, Z., S. S. Tiwari, A. B. Pandit, and J. B. Joshi. 2019. Computational fluid dynamics study of biomass cook stove—part 1: Hydrodynamics and homogeneous combustion. Ind. Eng. Chem. Res. 59 (9):4161–76. doi:10.1021/acs.iecr.9b03181.
  • IEA, Paris SDG7: Data. 2022. SDG7: Data and projections access to affordable, reliable, sustainable and modern energy for all. https://www.Iea.Org/Reports/Sdg7-Data-and-Projections.
  • IIPS. 2020. National family health survey (NFHS-5). http://rchiips.org/nfhs/.
  • Islam, M. M., R. Wathore, H. Zerriffi, J. D. Marshall, R. Bailis, and A. P. Grieshop. 2020. In-use emissions from biomass and LPG stoves measured during a large, multi-year cookstove intervention study in rural India. Sci. Total Environ. 758:143698. November. doi:10.1016/j.scitotenv.2020.143698.
  • Islam, M. M., R. Wathore, H. Zerriffi, J. D. Marshall, R. Bailis, and A. P. Grieshop. 2022. Assessing the effects of stove use patterns and kitchen chimneys on Indoor air quality during a multiyear cookstove randomized control trial in Rural India. Environ. Sci. Technol. 56 (12):8326–37. doi:10.1021/acs.est.1c07571. May, acs.est
  • ISO. 2019. ISO 19869: 2019 clean cookstoves and clean cooking solutions — field testing methods for cookstoves. ISO. https://www.iso.org/standard/66521.html.
  • Karim, M. R., and J. Naser. 2018, June. CFD modelling of combustion and associated emission of wet woody biomass in a 4 MW moving grate boiler. Fuel 222:656–74. (Elsevier Ltd). doi: 10.1016/j.fuel.2018.02.195.
  • Kar, A., R. Wathore, A. Ghosh, S. Sharma, E. Floess, A. Grieshop, R. Bailis, and N. Labhasetwar. 2023. DDQ/Fe(NO3)3-catalyzed aerobic synthesis of 3-Acyl indoles and an in silico study for the binding affinity of N-Tosyl-3-acyl indoles toward RdRp against SARS-CoV-2. J. Org. Chem. 88 (2):838–51. doi:10.1021/acs.joc.2c02009.
  • Kaundal, A., S. Powar, and A. Dhar. 2021. Numerical investigation of the effect of air supply on cook stove performance. Inhal. Toxicol 33 (5):193–203. doi:10.1080/08958378.2021.1929583. Taylor & Francis
  • Kim, H., K. Kang, and T. Kim. 2020. CFD simulation analysis on make-up air supply by distance from cookstove for cooking-generated particle. Int. J. Environ. Res. Public. Health 17 (21):7799. doi:10.3390/ijerph17217799.
  • Kirch, T., C. H. Birzer, P. R. Medwell, and L. Holden. 2018. The role of primary and secondary air on wood combustion in cookstoves. Int. J. Sustainable Energy 37 (3):268–77. doi:10.1080/14786451.2016.1166110. Taylor & Francis
  • Kshirsagar, M. P., V. R. Kalamkar, and R. R. Pande. 2020a. Biomass and bioenergy multi-response robust design optimization of natural draft biomass cook stove using response surface methodology and desirability function. Biomass. Bioenergy 135 (February):105507. doi:10.1016/j.biombioe.2020.105507. Elsevier Ltd
  • Kshirsagar, M. P., V. R. Kalamkar, and R. R. Pande. 2020b. Multi-response robust design optimization of natural draft biomass cook stove using response surface methodology and desirability function. Biomass. Bioenergy 135 (April):105507. doi:10.1016/j.biombioe.2020.105507.
  • Kumar, R., S. S. Lokras, and Jagdish, K. S.1990 Development, analysis & dissemination of a 3-pan cookstove. Bangalore, India:Karnataka State Council for Science and Technology.
  • Kutkan, H., and J. Guerrero. 2021. Turbulent premixed flame modeling using the algebraic flame surface wrinkling model: A comparative study between openFOAM and ansys fluent. Fluids 6(12): doi:10.3390/fluids6120462. MDPI.
  • Launder, B. E., and D. Brian Spalding. 1972. Lectures in mathematical models of turbulence. New York: Academic Press.
  • Launder, B. E., and D. B. Spalding. 1974. THe numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng . 3 (2):269–89. doi:10.1016/0045-7825(74)90029-2.
  • Liyanage, D., G. R. U. Senavirathna, C. Rodrigo, P. Thennnakoon, P. Madawala, and K. M. Muditha Dassanayake. 2021. Design of a biomass micro gasifier cookstove by CFD modelling. J. Inst. Eng. Sri Lanka 54(4): doi:10.4038/engineer.v54i4.7467. Sri Lanka Journals Online (JOL): 15.
  • MacCarty, N. A., and K. M. Bryden. 2015, June. Modeling of household biomass cookstoves: A review. Energy. Sustain. Dev. 26:1–13. doi: 10.1016/j.esd.2015.02.001. (Elsevier B.V.)
  • Mapelli, F., P. Di Milano, E. Colombo, P. Di Milano, F. Mapelli, R. Mereu, and J. Barbieri. 2013. CFD Feasibility Analysis Of An Improved Cook Stove (ICS) For Electricity Production Exergy Analysis And Exergoeconomics View Project A Solar Utility For Off-Grid Electricity Services In Tanzania View Project CFD Feasibility Analysis Of An Improved Cook Stove (ICS) For Electricity Production. https://www.researchgate.net/publication/282005741.
  • Marangwanda, G. T., D. M. Madyira, and T. O. Babarinde. 2020. Combustion models for biomass: A review. Energy Rep. 6:664–72. Elsevier Ltd. doi:10.1016/j.egyr.2019.11.135.
  • Masud, M. H., R. Ahamed, M. U. H. Mohammad, and M. Hasan. 2019. Mathematical model of heat transfer and feasibility test of improved cooking stoves in Bangladesh. Int. J. Ambient Energy 40 (3):317–28. doi:10.1080/01430750.2017.1392354.
  • Mehetre, S. A., N. L. Panwar, D. Sharma, and H. Kumar. 2017. Improved biomass cookstoves for sustainable development : A Review. Renewable Sustainable Energy Rev. 73:672–87. (September 2015). doi:10.1016/j.rser.2017.01.150.
  • Memon, S. A., M. S. Jaiswal, Y. Jain, V. Acharya, and D. S. Upadhyay. 2020. A comprehensive review and a systematic approach to enhance the performance of improved cookstove (ICS). J. Therm. Anal. Calorim. 141 (6):2253–63. Springer International Publishing:. doi:10.1007/s10973-020-09736-2.
  • Miller-Lionberg, D. D. 2011. A fine resolution CDF simulation approach for biomass cook stove development. Fort Collins, Colorado: Colorado State University Libraries. https://mountainscholar.org/bitstreams/d2d2baa9-a679-4751-96fa-e38cde0b5551/download
  • Naved, M. M., H. Kumbhare, R. Wathore, A. Gupta, and N. Labhsetwar. 2022. Evidence for reduced performance discrepancy of improved cookstoves at laboratory and field. Air Qual. Atmos. Health 15 (4):633–44. doi:10.1007/s11869-022-01158-3. January
  • Núñez, J., M. F. Moctezuma-Sánchez, E. M. Fisher, V. M. Berrueta, O. R. Masera, and A. Beltrán. 2020. Natural-draft flow and heat transfer in a plancha-type biomass cookstove. Renewable. Energy 146:727–36. Elsevier. doi:10.1016/j.renene.2019.07.007.
  • Pande, R. R., V. R. Kalamkar, and M. Kshirsagar. 2019. Making the popular clean: Improving the traditional multipot biomass cookstove in Maharashtra, India. Environ. Dev. Sustain. 21 (3):1391–410. doi:10.1007/s10668-018-0092-4.
  • Pande, R. R., M. P. Kshirsagar, and V. R. Kalamkar. 2020. Experimental and CFD analysis to study the effect of inlet area ratio in a natural draft biomass cookstove. Environ. Dev. Sustain. 22 (3):1897–911. Springer Netherlands. doi:10.1007/s10668-018-0269-x.
  • Prasad, K., E. S. Krishna, and P. Visser. 1985. Woodburning cookstoves. Adv. Heat. Transf. 17:159–317. Elsevier. doi:10.1016/S0065-2717(08)70286-7.
  • Riaz, A., A. Abbas, W. Jufei, L. Hua, M. Sultan, L. Bohong, S. M. Nyambura, and P. Xingjia. 2021. Experimental and comparative study of Chinese commercial improved coal-fired cooking and space-heating stoves. Environ. Sci. Pollut. Res. 28 (41):58135–41. doi:10.1007/s11356-021-14030-1.
  • Roden, C. A., T. C. Bond, S. Conway, A. Benjamin, O. Pinel, and N. Maccarty. 2009. Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves. Atmos. Environ. 43 (6):1170–81. doi:10.1016/j.atmosenv.2008.05.041.
  • Rosenthal, J., A. Quinn, A. P. Grieshop, A. Pillarisetti, and R. I. Glass. 2018. Clean cooking and the SDGs: Integrated Analytical Approaches to Guide Energy Interventions for Health and environment goals. Energy for Sustainable Development 42 (February):152–59. doi:10.1016/j.esd.2017.11.003.
  • Roshan, W., R. Hedaoo, A. Ahmad, A. Gupta, A. S. Dhoble, and N. Labhasetwar. 2023. Field based performance evaluation of optimized improved biomass mud cookstoves in rural India. Renewable. Energy 219:119567. November. doi:10.1016/j.renene.2023.119567.
  • Roshan, W., K. Mortimer, and A. P. Grieshop. 2017. In-use emissions and estimated impacts of traditional, natural- and forced-draft cookstoves in rural Malawi. Environ. Sci. Technol. 51 (3):1929–38. doi:10.1021/acs.est.6b05557.
  • Selvam, V., D. Ashok, I. Devi Rajamanoharan, V. Rajalakshmi, and K. Vidhya. 2022. Impact of ujjwala yojana scheme and its effect on behavioural changes among rural women. Int. J. Asian Bus. Inf. Manag. 13 (1):1–14. IGI Global. doi:10.4018/ijabim.315752.
  • Shah, R., and A. W. Date. 2011. Steady-state thermochemical model of a wood-burning cook-stove. Combust. Sci. Technol. 183 (4):321–46. doi:10.1080/00102202.2010.516617.
  • Shivanshu, D., A. Kumar, S. Kumar, N. Waghmare, H. C. Thaku, and S. Khan. 2019. CFD analysis of biodiesel blends and combustion using ansys fluent. In Materials Today: Proceedings, 26:665–70. Elsevier Ltd. doi:10.1016/j.matpr.2019.12.362.
  • Silva, J., J. Teixeira, S. Teixeira, S. Preziati, and J. Cassiano. 2017. CFD modeling of combustion in biomass furnace. Energy. Procedia. 120:665–72. Elsevier Ltd. doi:10.1016/j.egypro.2017.07.179.
  • Sutar, K. B., M. R. R. Sangeeta Kohli, A. Ray, and A. Ray. 2015. Biomass cookstoves: A review of technical aspects. Renewable Sustainable Energy Rev. 41:1128–66. doi:10.1016/j.rser.2014.09.003.
  • Ward, D. E., and C. C. Hardy. 1991. Smoke emissions from wildland fires. Environ. Int 17 (2–3):117–34. doi:10.1016/0160-4120(91)90095-8.
  • Weerasinghe, W. M. S. R., and U. D. L. Kumara. 2003. CFD approach for modelling of combustion of a semi enclosed cooking stove. International Conference on Mechanical Engineering 2003 (ICME2003), 26-28 December 2003, Dhaka, Bangladesh.
  • Wohlgemuth, A., S. Mazumder, and D. Andreatta. 2009. Computational heat transfer analysis of the effect of skirts on the performance of third-world cookstoves. J. Therm. Sci. Eng. Appl. 1 (4):1–10. doi:10.1115/1.4001483.
  • Wohlgemuth, A., S. Mazumder, and D. Andreatta. 2016. Analysis of the effect of skirts on the performance of third-world. J. Therm. Sci. Eng. Appl. 1 (4): (December 2009). doi:10.1115/1.4001483.
  • World Bank. 2023. Moving the needle on clean cooking for all. World. Bank https://projects.worldbank.org/en/results/2023/01/19/moving-the-needle-on-clean-cooking-for-all.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.