48
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental Study on the Micro-Structure of Lignite and Its Explosive Solid Residue

, , &
Received 26 Nov 2023, Accepted 14 Feb 2024, Published online: 06 Mar 2024

References

  • Abreu, Y. D., P. Patil, A. I. Marquez, and G. G. Botte. 2007. Characterization of electrooxidized Pittsburgh no. 8 coal. Fuel 86 (4):573–584. doi:10.1016/j.fuel.2006.08.021.
  • Amyotte, P. R. 2014. Some myths and realities about dust explosions. Process Saf. Environ. Prot. 92 (4):292–299. doi:10.1016/j.psep.2014.02.013.
  • Beny-Bassez, C., and J. N. Rouzaud. 1985. Scanning Electron Microscopy 1:119–32.
  • Beyssac, O., B. Goffé, J. P. Petitet, E. Froigneux, M. Moreau, and J. N. Rouzaud. 2003. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 59 (10):2267–76. doi:10.1016/S1386-1425(03)00070-2.
  • BP. 2020. BP statistical review of world energy 2020. London: British Petroleum Company.
  • Cao, W. 2016. Experimental and mechanism study on explosion characteristic of lignite coal dust. Nanjing: Nanjing University of Science & Technology.
  • Cerny, J. 1996. Structural dependence of CH bond absorptivities and consequences for FT-IR analysis of coals. Fuel 75 (11):1301–06. doi:10.1016/0016-2361(96)00103-2.
  • Cetinkaya, S., and Y. Yurum. 2000. Oxidative pyrolysis of Turkish lignites in air up to 500℃. Fuel Process. Technol. 67 (3):177–89. doi:10.1016/S0378-3820(00)00105-3.
  • Charpenay, S., M. A. Serio, R. Bassilakis, P. R. Solomon, and P. Landais. 1996. Influence of maturation on the pyrolysis products from coals and kerogens. 2. Modeling. Energy Fuels 10 (1):26–38. doi:10.1021/ef9501509.
  • Chen, Y., M. Mastalerz, and A. Schimmelmann. 2012. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. Int. J. Coal Geol. 104:22–33. doi:10.1016/j.coal.2012.09.001.
  • Coal.in-en.com. 2023. How is the coal rank determined? 2023 5.12. https://coal.in-en.com/html/coal-2593313.shtml (in Chinese)
  • Dun, W., L. Guijian, S. Ruoyu, and C. Shancheng. 2014. Influences of magmatic intrusion on the macromolecular and pore structures of coal: Evidences from Raman spectroscopy and atomic force microscopy. Fuel 119:191–201. doi:10.1016/j.fuel.2013.11.012.
  • Gao, F., H. Deng, X. Wang, F. Dai, and S. Wu. 2016. Raman Spectroscopic Analysis of Bituminous Coal. J. Analytical Sci. 32 (3):377–80.
  • Geng, W., T. Nakajima, H. Takanashi, and A. Ohki. 2009. Analysis of carboxyl group in coal and coal aromaticity by fourier transform infrared (FT-IR) spectrometry. Fuel 88 (1):139–44. doi:10.1016/j.fuel.2008.07.027.
  • Georgakopoulos, A., A. Iordanidis, and V. Kapina. 2003. Study of low rank Greek coals using FTIR spectroscopy. Energ. Source. 25 (10):995–1005. doi:10.1080/00908310390232442.
  • Han, F., Y. Zhang, A. Meng, J. Meng, Y. Zhang, Z. Liu, X. Wu, and D. Yu. 2014. FTIR analysis of yunnan lignite. J. China Coal Soc. 10 (11):2293–99. doi:10.1002/smll.201303697.
  • He, X., X. Liu, B. Nie, and D. Song. 2017. FTIR and raman spectroscopy characterization of functional groups in various rank coals. Fuel 206:555–63. doi:10.1016/j.fuel.2017.05.101.
  • He, J., Q. Yao, M. Zhang, B. Yang, L. Zhu, H. Chen, and X. Zhang. 2023. Study on integration of drying and separation for lignite by hot airflow gas–solid fluidized bed. Fuel 351:127557. doi:10.1016/j.fuel.2023.127557.
  • Hong, S., Z. Liu, E. Zhao, S. Lin, L. Qiu, J. Qian, H. Liu, and S. Xia. 2017. Comparison of behavior and microscopic characteristics of first and secondary explosions of coal dust. J. Loss Prev. Process Ind. 49:382–94. doi:10.1016/j.jlp.2017.08.005.
  • Huéscar Medina, C., B. MacCoitir, H. Sattar, D. J. F. Slatter, H. N. Phylaktou, G. E. Andrews, and B. M. Gibbs. 2015. Comparison of the explosion characteristics and flame speeds of pulverised coals and biomass in the ISO standard 1m3 dust explosion equipment. Fuel 151:91–101. doi:10.1016/j.fuel.2015.01.009.
  • Ibarra, J., E. Munoz, and R. Moliner. 1996. FTIR study of the evolution of coal structure during the coalification process. Org. Geochem. 24 (6):725–35. doi:10.1016/0146-6380(96)00063-0.
  • IEA. 2022. Coal 2022-analysis and forecast to 2025.
  • Jawhari, T., A. Roid, and J. Casado. 1995. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33 (11):1561–1565. doi:10.1016/0008-6223(95)00117-V.
  • Kawakami, M., H. Kanba, K. Sato, T. Takenaka, S. Gupta, R. Chandratilleke, and V. Sahajwalla. 2006. Characterization of thermal annealing effects on the evolution of coke carbon structure using raman spectroscopy and X-ray diffraction. ISIJ Int. 46 (8):1165–70. doi:10.2355/isijinternational.46.1165.
  • Lahfid, A., O. Beyssac, E. Deville, F. Negro, C. Chopin, and B. Goffe. 2010. Evolution of the raman spectrum of carbonaceous material in low-grade metasediments of the glarus alps (Switzerland). Terra. Nova 22 (5):354–60. doi:10.1111/j.1365-3121.2010.00956.x.
  • Li, C. 2007. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal. Fuel 86 (12–13):1664–1683. doi:10.1016/j.fuel.2007.01.008.
  • Li, X., J. Hayashi, and C. Li. 2006. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel 85 (12):1700–07. doi:10.1016/j.fuel.2006.03.008.
  • Li, K., S. M. Rimmer, Q. Liu, and Y. Zhang. 2019. Micro-raman spectroscopy of microscopically distinguishable components of naturally graphitized coals from central Hunan Province, China. Energy Fuels 33 (2):1037–1048. doi:10.1021/acs.energyfuels.8b04065.
  • Liu, Q., C. Bai, X. Li, L. Jiang, and W. Dai. 2010. Coal dust/air explosions in a large-scale tube. Fuel 89 (2):329–35. doi:10.1016/j.fuel.2009.07.010.
  • Liu, Z., S. Lin, S. Zhang, E. Wang, and G. Liu. 2016. Observations of microscopic characteristics of post-explosion coal dust samples. J. Loss Prev. Process Ind. 43:378–84. doi:10.1016/j.jlp.2016.06.021.
  • Liu, Z., X. Li, J. Qian, S. Lin, and S. Zhang. 2017. A study of the characteristics of gaseous and solid residues after coal dust explosions. Combust. Sci. Technol. 189 (9):1639–58. doi:10.1080/00102202.2017.1318857.
  • Liu, Z., S. Zhang, Z. Li, ZL Zhao, S Lin, and RL Guo. 2015. Investigation on coal dust explosion residues using 20L explosion sphere vessels. J. China Univ. Min. Technol. 44 (5):823–28.
  • Li, Q., C. Yuan, Q. Tao, Y. Zheng, and Y. Zhao. 2018. Experimental analysis on post-explosion residues for evaluating coal dust explosion severity and flame propagation behaviors. Fuel 215:417–28. doi:10.1016/j.fuel.2017.11.093.
  • Machnikowska, H., A. Krztoń, and J. Machnikowski. 2002. The characterization of coal macerals by diffuse reflectance infrared spectroscopy. Fuel 81 (2):245–252. doi:10.1016/S0016-2361(01)00125-9.
  • Ma, J., W. Li, and K. Xie. 2002. Research on coal structure using FT-IR. J. China Univ. Min. Technol. 31 (5):362–66.
  • Morga, R. 2011. Micro-Raman spectroscopy of carbonized semifusinite and fusinite. Int. J. Coal Geo. l87 (3–4):253–67. doi:10.1016/j.coal.2011.06.016.
  • Nie, B., C. Peng, J. Gong, F. Yin, and K. Wang. 2021. Explosion characteristics and energy utilisation of coal mine ultra-lean methane. Combust. Theor. Model. 25 (1):73–95. doi:10.1080/13647830.2020.1833085.
  • Nie, B., C. Peng, K. Wang, and L. Yang. 2020. Structure and formation mechanism of methane explosion soot. ACS. Omega. 5 (49):31716–23. doi:10.1021/acsomega.0c04234.
  • Painter, P., M. Sobkowiak, and J. Youtcheff. 1987. FT-IR study of hydrogen bonding in coal. Fuel 66 (7):973–78. doi:10.1016/0016-2361(87)90338-3.
  • Qian, J., Z. Liu, S. Lin, X. Li, and M. Ali. 2020. Study on microstructure characteristics of material evidence in coal dust explosion and its significance in accident investigation. Fuel 265:116992. doi:10.1016/j.fuel.2019.116992.
  • Qian, J., Z. Liu, S. Lin, X. Li, S. Hong, and D. Li. 2018. Characteristics analysis of post-explosion coal dust samples by X-ray diffraction. Combust. Sci. Technol. 190 (4):740–54. doi:10.1080/00102202.2017.1407317.
  • Qian, J., Z. Liu, S. Lin, H. Liu, M. Ali, and W. Kim. 2023. Re-explosion hazard potential of solid residues and gaseous products of coal dust explosion. Adv. Powder Technol. 34 (9):104129. doi:10.1016/j.apt.2023.104129.
  • Qi, X., D. Wang, H. Xin, and G. Qi. 2013. In situ FTIR study of real-time changes of active groups during oxygen-free reaction of coal. Energy Fuels 27 (6):3130–36. doi:10.1021/ef400534f.
  • Rodrigues, S., M. Marques, I. Suarez-Ruiz, I. Camean, D. Flores, and B. Kwiecinska. 2013. Microstructural investigations of natural and synthetic graphites and semi-graphites. Int. J. Coal Geol. 111:67–79. doi:10.1016/j.coal.2012.06.013.
  • Rouzaud, J. N., A. Oberlin, and C. Beny-Bassez. 1983. Carbon films: Structure and microtexture (optical and electron microscopy, raman spectroscopy). Thin Solid Films 105 (1):75–96. doi:10.1016/0040-6090(83)90333-4.
  • Sadezky, A., H. Muckenhuber, H. Grothe, R. Niessner, and U. Pöschl. 2005. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 43 (8):1731–42. doi:10.1016/j.carbon.2005.02.018.
  • Schwan, J., S. Ulrich, V. Batori, H. Ehrhardt, and S. R. P. Silva. 1996. Raman spectroscopy on amorphous carbon films. J. Appl. Phys. 80 (1):440–47. doi:10.1063/1.362745.
  • Smith, M. W., I. Dallmeyer, T. J. Johnson, C. S. Brauer, J.-S. McEwen, J. F. Espinal, and M. Garcia-Perez. 2016. Structural analysis of char by Raman spectroscopy: Improving band assignments through computational calculations from first principles. Carbon 100:678–92. doi:10.1016/j.carbon.2016.01.031.
  • Tsu, R., H. J. Gonzalez, C. I. Hernandez, and C. A. Luengo. 1977. Raman scattering and Luminescences in coal and graphite. Solid State Commun. 24 (12):809–11. doi:10.1016/0038-1098(77)91218-2.
  • Tuinstra, F., and J. L. Koenig. 1970. Raman spectrum of graphite. J. Chem. Phys. 53 (3):1126. doi:10.1063/1.1674108.
  • Ulyanova, E. V., A. N. Molchanov, I. Y. Prokhorov, and V. G. Grinyov. 2014. Fine structure of Raman Spectra in coals of different rank. Int. J. Coal Geol. 121:37. doi:10.1016/j.coal.2013.10.014.
  • Vidano, R., and D. B. Fischbach. 1978. New lines in the raman spectra of carbons and graphite. J. Am. Ceram. Soc. 61 (1–2):13–17. doi:10.1111/j.1151-2916.1978.tb09219.x.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2003. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Prog. Energy Combust. Sci. 29 (6):487–513. doi:10.1016/S0360-1285(03)00042-X.
  • Wang, S., T. Li, L. Wu, L. Zhang, L. Dong, X. Hu, and C.Z. Li. 2015. Second-order raman spectroscopy of char during gasification. Fuel Process. Technol. 135:105–11. doi:10.1016/j.fuproc.2014.11.002.
  • Xie, H., S. Ren, Y. Xie, and X. M Jiao. 2021. Development opportunities of the coal industry towards the goal of carbon neutrality. J. China Coal Soc. 46 (7):2197–211.
  • Xie, H., J. Wang, G. Wang, H. Ren, J. Liu, S. Ge, H. Zhou, G. Wu, and S. Ren. 2018. New ideas of coal revolution and layout of coal science and technology development. J. China Coal Soc. 43 (5):1187–97.
  • Xin, H. 2016. Exploring of stage evolution characteristics and reaction mechanism of oxygen-lean combustion in coal fire. Xuzhou, China. Doctorate: China University Mining and Technology.
  • Xu, J., Q. He, Z. Xiong, Y. Yu, S. Zhang, X. Hu, L. Jiang, S. Su, S. Hu, Y. Wang, et al. 2021. Raman Spectroscopy as a versatile tool for investigating thermochemical processing of coal, biomass, and wastes: Recent advances and future perspectives. Energy Fuels 35(4):2870–2913. doi:10.1021/acs.energyfuels.0c03298.
  • Yan, H., B. Nie, C. Peng, P. Liu, X. Wang, F. Yin, J. Gong, Y. Wei, and S. Lin. 2021. Molecular model construction of low-quality coal and molecular simulation of chemical bond energy combined with materials studio. Energy Fuels 35 (21):17602–16. doi:10.1021/acs.energyfuels.1c02658.
  • Yan, H., B. Nie, C. Peng, P. Liu, X. Wang, F. Yin, J. Gong, Y. Wei, S. Lin, Q. Gao, et al. 2022. Evaluation on explosion characteristics and parameters of pulverized coal for low-quality coal: Experimental study and analysis. Environ. Sci. Pollut. Res. 29(13):18851–18867. doi:10.1007/s11356-021-17170-6.
  • Yao, B., L. Zhu, J. He, Y. Fu, and W. Yin. 2023. Effective reverse flotation separation of siderite from hornblende using pentaethoxylated tallow amine as a selective collector. Appl. Surf. Sci. 638:158030. doi:10.1016/j.apsusc.2023.158030.
  • Zhang, Z., G. Liu, Y. Cao, J. Lin, Y. Jin, B. Xian, R. Lv, and Z. Zhang. 2021. Experimental investigation of CS2 extraction to enhance the permeability of coal. Transp. Porous Media 136 (3):899–922. doi:10.1007/s11242-021-01546-w.
  • Zhang, Z., G. Liu, P. Chang, X. Wang, and J. Lin. 2023. Fractal characteristics for coal chemical structure: Principle, methodology and implication. Chaos, Solitons Fractals 173:113699. doi:10.1016/j.chaos.2023.113699.
  • Zhang, S., Z. Min, H. L. Tay, M. Asadullah, and C.-Z. Li. 2011. Effects of volatile–char interactions on the evolution of char structure during the gasification of Victorian brown coal in steam. Fuel 90 (4):1529–35. doi:10.1016/j.fuel.2010.11.010.
  • Zhang, K., S. Yao, W. X. Hu, H. F. Fang et al. 2009. Analysis on infrared spectra characteristic of coal and discussion of coalification mechanism. Coal. Geol & Explor 37 (6):8–13.
  • Zodrow, E. L., M. Mastalerz, U. Werner-Zwanziger, and J. A. D’Angelo. 2010. Medullosalean fusain trunk from the roof rocks of a coal seam: Insight from FTIR and NMR (pennsylvanian Sydney coalfield, Canada). Int. J. Coal Geol. 82 (1):116–24. doi:10.1016/j.coal.2010.02.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.