89
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Visualization and Analysis of Mapping Knowledge Domains for Coal Functional Groups

, , , , , , , & show all
Received 07 Jul 2023, Accepted 03 Mar 2024, Published online: 28 Mar 2024

References

  • Ban, Y. P., L. J. Jin, F. G. Liu, J. L. Zhu, Y. Li, H. Yang, and H. Q. Hu. 2022. Pyrolysis behaviors of model compounds with representative oxygen-containing functional groups in coal over calcium. Fuel 310:122247. doi:10.1016/j.fuel.2021.122247.
  • Baysal, M., A. Yurum, B. Yildiz, and Y. Yurum. 2016. Structure of some western Anatolia coals investigated by FTIR, raman, 13C solid state NMR spectroscopy and X-ray diffraction. Int. J. Coal Geol. 163:166–76. doi:10.1016/j.coal.2016.07.009.
  • Beamish, B. B., M. A. Barakat, and J. D. St George. 2000. Adiabatic testing procedures for determining the self-heating propensity of coal and sample ageing effects. Thermochim. Acta 362 (1–2):79–87. doi:10.1016/S0040-6031(00)00588-8.
  • Boehm, H., Z. Kolloid, M. Schneider, F. Arendt, H. Wistuba, M. Herrmann, and R. Jenne-Baumann. 1986. Die Chemie der Oberfläche fester Stoffe. Polym. 227 (1–2):17. doi:10.1007/BF02085273.
  • Chen, C. M. 2006. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. 57 (3):359–77. doi:10.1002/asi.20317.
  • Cinar, M. 2009. Floatability and desulfurization of a low-rank (Turkish) coal by low-temperature heat treatment. Fuel Process. Technol. 90 (10):1300–04. doi:10.1016/j.fuproc.2009.06.017.
  • Cui, X., X. Li, Y. Li, and S. Li. 2017. Evolution mechanism of oxygen functional groups during pyrolysis of Datong coal. J. Therm. Anal. Calorim. 129 (2):1169–80. doi:10.1007/s10973-017-6224-5.
  • Ding, X., and Z. Yang. 2022. Knowledge mapping of platform research: A visual analysis using VOSviewer and CiteSpace. Electron. Commer. Res. 22 (3):787–809. doi:10.1007/s10660-020-09410-7.
  • Dzikowski, P. 2018. A bibliometric analysis of born global firms. J. Bus. Res. 85:281–94. doi:10.1016/j.jbusres.2017.12.054.
  • Gao, Z., X. Liu, A. Li, C. Ma, X. Li, X. Ding, and W. Yang. 2019. Adsorption behavior of mercuric oxide clusters on activated carbon and the effect of SO2 on this adsorption: A theoretical investigation. J. Mol. Model. 25 (5). doi:10.1007/s00894-019-4026-3.
  • Gao, J., X. Tao, T. Hou, and Y. Wan. 2008. Progress of lignite drying and dehydration technology. Clean Coal. Technol. 14 (5):73e6 (in Chinese).
  • Geng, W., T. Nakajima, H. Takanashi, and A. Ohki. 2009. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry. Fuel 88 (1):139–44. doi:10.1016/j.fuel.2008.07.027.
  • Gensterblum, Y., A. Busch, and B. M. Krooss. 2014. Molecular concept and experimental evidence of competitive adsorption of H2O, CO2 and CH4 on organic material. Fuel 115:581–88. doi:10.1016/j.fuel.2013.07.014.
  • He, X., X. Liu, B. Nie, and D. Song. 2017. FTIR and raman spectroscopy characterization of functional groups in various rank coals. Fuel 206:555–63. doi:10.1016/j.fuel.2017.05.101.
  • He, M., W. Zhang, X. Cao, X. You, and L. Li. 2018. Adsorption behavior of surfactant on lignite surface: A comparative experimental and molecular dynamics simulation study. Int. J. Mol. Sci. 19 (2):437. doi:10.3390/ijms19020437.
  • Hu, B., Y. Cheng, Z. Wang, X. He, Z. Jiang, M. Yi, W. Li, and L. Wang. 2019. Effect of pulverization on the microporous and ultramicroporous structures of coal using low-pressure CO2 adsorption. Energy Fuels. 33 (11):10611–21. doi:10.1021/acs.energyfuels.9b02354.
  • Jiang, J. Y., D. Wu, J. H. Mou, Q. Zhang, and F. Pan. 2017. Macromolecular structure evolution and its significance for perhydrous coal under drying and pyrolysis conditions. Drying Technol. 35 (11):1398–411. doi:10.1080/07373937.2017.1331357.
  • Jiang, J., W. Yang, Y. Cheng, Z. Liu, Q. Zhang, and K. Zhao. 2019. Molecular structure characterization of middle-high rank coal via XRD, raman and FTIR spectroscopy: Implications for coalification. Fuel 239:559–72. doi:10.1016/j.fuel.2018.11.057.
  • Kang, Y., F. Huang, L. You, X. Li, and B. Gao. 2016. Impact of fracturing fluid on multi-scale mass transport in coalbed methane reservoirs. Int. J. Coal Geol. 154-155:123–35. doi:10.1016/j.coal.2016.01.003.
  • Karanfil, T., and J. E. Kilduff. 2000. Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 1. priority pollutants. Environ. Sci. Technol. 34 (11):2372–72. doi:10.1021/es002008e.
  • Kim, S., Y. Kang, H. Lee, J. K. Kim, and S. C. Hong. 2012. Physicochemical properties of chars at different treatment temperatures. J. Air Waste Manage. Associat. 62 (2):235–241. doi:10.1080/10473289.2011.644413.
  • Li, Z., C. Ding, W. Wang, B. Lu, and D. Gao. 2022. Simulation study on the adsorption characteristics of CO2 and CH4 by oxygen-containing functional groups on coal surface. Energy Sources, Part A: Recov. Utilizat. Environment. Effects 44 (2):3709–19. doi:10.1080/15567036.2022.2069305.
  • Li, W., B. Jiang, T. A. Moore, G. Wang, J. G. Liu, and Y. Song. 2017. Characterization of the chemical structure of tectonically deformed coals. Energy Fuels 31 (7):6977–85. doi:10.1021/acs.energyfuels.7b00901.
  • Li, K., R. Khanna, J. Zhang, M. Barati, Z. Liu, T. Xu, T. Yang, and V. Sahajwalla. 2015. Comprehensive investigation of various structural features of bituminous coals using advanced analytical techniques. Energy Fuels 29 (11):7178–89. doi:10.1021/acs.energyfuels.5b02064.
  • Liu, L., J. Fei, M. Cui, Y. Hu, and J. Wang. 2014. XANES spectroscopic study of sulfur transformations during co-pyrolysis of a calcium-rich lignite and a high-sulfur bituminous coal. Fuel Process. Technol. 121:56–62. doi:10.1016/j.fuproc.2013.12.008.
  • Liu, H., R. Hong, C. Xiang, C. Lv, and H. Li. 2020. Visualization and analysis of mapping knowledge domains for spontaneous combustion studies. Fuel 262:116598. doi:10.1016/j.fuel.2019.116598.
  • Liu, J., L. Luo, J. Ma, H. Zhang, and X. Jiang. 2016. Chemical properties of superfine pulverized coal particles. 3. Nuclear magnetic resonance analysis of carbon structural features. Energy Fuels 30 (8):6321–29. doi:10.1021/acs.energyfuels.6b01029.
  • Liu, X., F. Zhao, H. Guo, D. Xia, Z. Dong, and Z. Li. 2022. The characterization of organic nitrogen and sulfur functional groups in coals after biomethane production. Environ. Sci. Pollut. Res. 29 (22):33495–505. doi:10.1007/s11356-021-18015-y.
  • Li, L., Y. Zhang, Y. Zhang, J. Sun, and Z. Hao. 2016. The thermal activation process of coal gangue selected from zhungeer in China. J. Therm. Anal. Calorim. 126 (3):1559–66. doi:10.1007/s10973-016-5711-4.
  • Ma, L., R. Guo, Y. Gao, L. Ren, G. Wei, and C. Li. 2019. Study on coal spontaneous combustion characteristics under methane-containing atmosphere. Combust. Sci. Technol. 191 (8):1456–72. doi:10.1080/00102202.2018.1531286.
  • Mathews, J. P., and A. L. Chaffee. 2012. The molecular representations of coal – a review. Fuel 96 (1):1–14. doi:10.1016/j.fuel.2011.11.025.
  • Nie, B., J. Gong, L. Yang, C. Peng, Y. Fan, and L. Zhang. 2021. Experimental analysis on gas and solid residues of pre- and post-explosion coal dust. Energy Fuels 35 (2):1727–40. doi:10.1021/acs.energyfuels.0c03338.
  • Nishino, J. 2001. Adsorption of water vapor and carbon dioxide at carboxylic functional groups on the surface of coal. Fuel 80 (5):757–64. doi:10.1016/S0016-2361(00)00136-8.
  • Niu, H., M. Tao, Y. Bu, S. Li, Y. Yang, Q. Sun, and Z. Mao. 2022. Spontaneous combustion characteristics and mechanism of water-immersed and air-dried brown coal. Energy Sources, Part A: Recovery, Utilizat. Environ. Effects 44 (3):7413–31. doi:10.1080/15567036.2022.2112786.
  • Okolo, G. N., H. W. Neomagus, R. C. Everson, M. J. Roberts, J. R. Bunt, R. Sakurovs, and J. P. Mathews. 2015. Chemical–structural properties of South African bituminous coals: Insights from wide angle XRD–carbon fraction analysis, ATR–FTIR, solid state 13 C NMR, and HRTEM techniques. Fuel 158:779–92. doi:10.1016/j.fuel.2015.06.027.
  • Pietrzak, R., H. Wachowska, and P. Nowicki. 2005. The effect of flame coal oxidation on the solid and soluble products of its extraction. Open Chem. 3 (4):852–865. doi:10.2478/BF02475208.
  • Potgieter-Vermaak, S., N. Maledi, N. Wagner, J. Van Heerden, H. P. Van Grieken, and J. H. Potgieter. 2011. Raman spectroscopy for the analysis of coal: A review. J. Raman. Spectroscopy 42 (2):123–29. doi:10.1002/jrs.2636.
  • Qiu, H.-H., and L.-G. Liu. 2018. A study on the evolution of carbon capture and storage technology based on knowledge mapping. Energ. 11 (5):1103. doi:10.3390/en11051103.
  • Rodrigues, C. F. D. S., and M. J. L. 2002. The measurement of coal porosity with different gases. Int. J. Coal Geol. 48 (3–4):245–51. doi:10.1016/S0166-5162(01)00061-1.
  • Shao, Z., B. Tan, Y. Guo, T. Li, X. Li, X. Fang, F. Wang, Q. Zhang, and H. Wang. 2022. Visualization and analysis of mapping knowledge domains for coal pores studies. Fuel 320:123761. doi:10.1016/j.fuel.2022.123761.
  • Shao, X. H., X. R. Zhang, and W. C. Wang. 2003. Comparison of density functional theory and molecular simulation methods for pore size distribution of mesoporous materials. Acta Phys. Chim. Sin. 19 (6):538–42. doi:10.3866/PKU.WHXB20030612.
  • Song, J., J. Deng, J. Zhao, Y. Zhang, C. Wang, and C. Shu. 2021. Critical particle size analysis of gas emission under high-temperature oxidation of weathered coal. Energy 214:118995. doi:10.1016/j.energy.2020.118995.
  • Song, Y., B. Jiang, and F. Lan. 2019. Competitive adsorption of CO2/N2/CH4 onto coal vitrinite macromolecular: Effects of electrostatic interactions and oxygen functionalities. Fuel 235:23–38. doi:10.1016/j.fuel.2018.07.087.
  • Song, Y., Y. Zhu, and W. Li. 2017. Macromolecule simulation and CH4 adsorption mechanism of coal vitrinite. Appl. Surf. Sci. 396:291–302. doi:10.1016/j.apsusc.2016.10.127.
  • Song, Z. Y., H. Q. Zhu, B. Tan, H. Y. Wang, and X. F. Qin. 2014. Numerical study on effects of air leakages from abandoned galleries on hill-side coal fires. Fire Saf. J. 69:99–110. doi:10.1016/j.firesaf.2014.08.011.
  • Tang, Y. 2015. Analysis of coals with different spontaneous combustion characteristics using infrared spectrometry. J. Appl. Spectrosc. 82 (2):316–21. doi:10.1007/s10812-015-0105-0.
  • Temel, H. A., V. Bozkurt, and F. D. Ayhan. 2010. Desulfurization and deashing of Adiyaman-Gölbaşi lignite by flotation. Energy Sources Part A-Recovery Utilizat. Environment. Effect. 32 (8):727–43. doi:10.1080/15567030903058550.
  • Thelwall, M. 2008. Bibliometrics to webometrics. J. Inf. Sci. 34 (4):605–21. doi:10.1177/0165551507087238.
  • Tian, H., T. Li, T. Zhang, and X. Xiao. 2016. Characterization of methane adsorption on overmature lower Silurian–upper Ordovician shales in Sichuan basin, southwest China: Experimental results and geological implications. Int. J. Coal Geol. 156:36–49. doi:10.1016/j.coal.2016.01.013.
  • Ulyanova, E. V., A. N. Molchanov, I. Y. G. Prokhorov, and V. G. 2014. Fine structure of raman spectra in coals of different rank. Int. J. Coal Geol. 121:37–43. doi:10.1016/j.coal.2013.10.014.
  • Wang, H., S. Fan, and H. Yao. 2018. FTIR analysis on surface chemical structure of two different degrees of metamorphic coal. Saf. Coal Mines 49 (1):194–97 (in chinese).
  • Wang, F., B. Tan, Y. Chen, X. Fang, G. Jia, H. Wang, G. Cheng, and Z. Shao. 2022. A visual knowledge map analysis of mine fire research based on CiteSpace. Environ. Sci. Pollut. Res. 29 (51):77609–24. doi:10.1007/s11356-022-20993-6.
  • Wang, T., H. Y. Wang, X. Y. Fang, G. D. Wang, Y. Q. Chen, Z. Y. Xu, and Q. J. Qi. 2023. Research progress and visualization of underground coal fire detection methods. Environ. Sci. Pollut. Res. 30 (30):74671–90. doi:10.1007/s11356-023-27678-8.
  • Wang, D., H. Xin, X. Qi, G. Dou, G. Qi, and L. Ma. 2016. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics. Combust. Flame 163:447–60. doi:10.1016/j.combustflame.2015.10.019.
  • Wang, D., H. Xin, X. Qi, G. Dou, and X. Zhong. 2014. Mechanism and relationships of elementary reactions in spontaneous combustion of coal: The coal oxidation kinetics theory and application. J. China Coal Soc. 39 (8):1667–74 (in chinese).
  • Xie, J., Y. Liang, Q. Zou, Z. Wang, and X. Li. 2019. Prediction model for isothermal adsorption curves based on adsorption potential theory and adsorption behaviors of methane on granular coal. Energy Fuels. 33 (3):1910–21. doi:10.1021/acs.energyfuels.8b03946.
  • Xing, Y. 2017. Corrigendum to “intensification mechanism of oxidized coal flotation by using oxygen-containing collector α-furanacrylic acid” [powder technology 305 (2017) 109–116]. Powder Technol. 311:356–56. doi:10.1016/j.powtec.2017.01.079.
  • Xin, H. H., D. M. Wang, X. Y. Qi, G. S. Qi, and G. L. Dou. 2014. Structural characteristics of coal functional groups using quantum chemistry for quantification of infrared spectra. Fuel Process. Technol. 118:287–95. doi:10.1016/j.fuproc.2013.09.011.
  • Xu, T., X. T. Shen, J. Y. Chen, and Z. H. Chen. 2020. Distribution of the functional groups in various coals with different spontaneous propensity. Int. J. Coal Prep. Util. 40 (6):349–58. doi:10.1080/19392699.2019.1599365.
  • Yang, Z., F. Guo, Y. Xia, Y. Xing, and X. Gui. 2020. Improved floatability of low-rank coal through surface modification by hydrothermal pretreatment. J. Cleaner Prod. 246:119025. doi:10.1016/j.jclepro.2019.119025.
  • Yuan, L., Z. Qiu, Y. Yang, C. Liu, and R. Zhang. 2022. Preparation, structural characterization and antioxidant activity of water-soluble polysaccharides and purified fractions from blackened jujube by an activity-oriented approach. Food Chem. 385:132637. doi:10.1016/j.foodchem.2022.132637.
  • Yue, T., H. Liu, R. Long, H. Chen, X. Gan, and J. Liu. 2020. Research trends and hotspots related to global carbon footprint based on bibliometric analysis: 2007–2018. Environ. Sci. Pollut. Res. 27 (15):17671–91. doi:10.1007/s11356-020-08158-9.
  • Yu, C. M., N. Zhang, and H. P. Teng. 2021. Investigation of different structures of coals through FTIR and raman techniques. Spectroscopy and Spectral Analysis 41 (7):2050–56. doi:10.3964/j.issn.1000-0593(2021)07-2050-07.
  • Zhang, S. 2004. Coal chemistry. Xu Zhou City, Jiang Su Province, China: China University of Mining and Technology Press (in chinese).
  • Zhang, B., W. Cheng, Q. Zhang, Y. Li, P. Sun, and D. Fathy. 2022. Occurrence patterns and enrichment influencing factors of trace elements in Paleogene coal in the Fushun basin, China. ACS Earth Space Chem. 6 (12):3031–42. doi:10.1021/acsearthspacechem.2c00263.
  • Zhang, Y., Y. Hou, J. Zhao, J. Deng, X. Wen, C. Liu, A. Wang, and P. Shu. 2021. Heat release characteristic of key functional groups during low-temperature oxidation of coal. Combust. Sci. Technol. 193 (15):2692–703. doi:10.1080/00102202.2020.1755970.
  • Zhang, K. Z., A. A. Zou, L. Wang, Y. P. Cheng, W. Li, and C. Liu. 2022. Multiscale morphological and topological characterization of coal microstructure: Insights into the intrinsic structural difference between original and tectonic coals. Fuel 321:124076. doi:10.1016/j.fuel.2022.124076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.