71
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characteristic Behavior of Methane/Hydrogen Premixed Flame in Ultrafine Water Mist with Potassium Additives

, , , , , , , & show all
Received 17 Aug 2023, Accepted 03 Mar 2024, Published online: 18 Mar 2024

References

  • Adiga, K. C., H. D. Willauer, R. Ananth, and F. W. Williams. 2009. Implications of droplet breakup and formation of ultra fine mist in blast mitigation. Fire Safe. J. 44 (3):363–69. doi:10.1016/j.firesaf.2008.08.003.
  • Altantzis, C., C. E. Frouzakis, A. G. Tomboulides, M. Matalon, and K. Boulouchos. 2012. Hydrodynamic and thermodiffusive instability effects on the evolution of laminar planar lean premixed hydrogen flames. J. Fluid Mech. 700:329–61. doi:10.1017/jfm.2012.136.
  • Back Iii, G. G., C. L. Beyler, and R. Hansen. 2000. The capabilities and limitations of total flooding, water mist fire suppression systems in machinery space applications. Fire Technol. 36 (1):8–23. doi:10.1023/A:1015473502679.
  • Badhuk, P., and R. V. Ravikrishna. 2022. Flame inhibition by aqueous solution of Alkali salts in methane and LPG laminar diffusion flames. Fire Safe. J. 130:103586. doi:10.1016/j.firesaf.2022.103586.
  • Birchall, J. D. 1970. On the mechanism of flame inhibition by alkali metal salts. Combust. Flame 14 (1):85–95. doi:10.1016/S0010-2180(70)80013-X.
  • Cai, X., J. Wang, Z. Bian, H. Zhao, Z. Li, and Z. Huang. 2021. Propagation of Darrieus–Landau unstable laminar and turbulent expanding flames. Proc. Combust. Inst 38 (2):2013–21. doi:10.1016/j.proci.2020.06.247.
  • Cao, X., J. Ren, M. Bi, Y. Zhou, and Y. Li. 2017. Experimental research on the characteristics of methane/air explosion affected by ultrafine water mist. J. Hazard. Mater. 324:489–97. doi:10.1016/j.jhazmat.2016.11.017.
  • Chakravarthy, S. R., R. Sampath, and V. Ramanan. 2017. Dynamics and diagnostics of flame-acoustic interactions. Combust. Sci.Technol. 189 (3):395–437. doi:10.1080/00102202.2016.1202938.
  • Chelliah, H. K., A. K. Lazzarini, P. C. Wanigarathne, and G. T. Linteris. 2002. Inhibition of premixed and non-premixed flames with fine droplets of water and solutions. Proc. Combust. Inst. 29 (1):369–76. doi:10.1016/S1540-7489(02)80049-9.
  • Chen, F., B. Yao, W. Guo, G. Zhu, T. Xu, T. Deng, Z. Jiang, Z. Wang, M. Peng, and X. Wang. 2023. Experiment study on fire extinguishing effects of airflow-water synergistic jet. Case stud. Therm. Eng. 49:103367. doi:10.1016/j.csite.2023.103367.
  • Chen, F., B. Yao, G. Zhu, W. Guo, T. Xu, T. Deng, Z. Jiang, Z. Wang, M. Peng, and X. Wang. 2023. Improving the fire-extinguishing effect of pneumatic extinguishers with airflow-spray synergistic jet: Investigation of nozzle position and number of nozzles. Case stud. Therm. Eng. 47:103124. doi:10.1016/j.csite.2023.103124.
  • Cheng, M., K. C. Hung, and O. Y. Chong. 2005. Numerical study of water mitigation effects on blast wave. Shock. Waves. 14 (3):217–23. doi:10.1007/s00193-005-0267-4.
  • di Lullo, G., T. Giwa, A. Okunlola, M. Davis, T. Mehedi, A. O. Oni, and A. Kumar. 2022. Large-scale long-distance land-based hydrogen transportation systems: A comparative techno-economic and greenhouse gas emission assessment. Int. J. Hydrog. Energy. 47 (83):35293–319. doi:10.1016/j.ijhydene.2022.08.131.
  • Gieras, M. 2008. Flame acceleration due to water droplets action. J. Loss Prevent. Proc. Ind. 21 (4):472–77. doi:10.1016/j.jlp.2008.03.004.
  • Grant, G., J. Brenton, and D. Drysdale. 2000. Fire suppression by water sprays: Prog. Energy Combust. Sci. 26 (2):79–130. doi:10.1016/S0360-1285(99)00012-X.
  • Gupta, M., A. Pasi, A. Ray, and S. R. Kale. 2013. An experimental study of the effects of water mist characteristics on pool fire suppression. Exp. Therm. Fluid Sci. 44:768–78. doi:10.1016/j.expthermflusci.2012.09.020.
  • Hansson, K.-M., J. Samuelsson, C. Tullin, and L.-E. Åmand. 2004. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds. Combust. Flame. 137 (3):265–77. doi:10.1016/j.combustflame.2004.01.005.
  • Hasslberger, J., G. Ozel-Erol, N. Chakraborty, M. Klein, and S. Cant. 2021. Physical effects of water droplets interacting with turbulent premixed flames: A direct numerical simulation analysis. Combust. Flame 229:111404. doi:10.1016/j.combustflame.2021.111404.
  • Huang, X., X. S. Wang, and G. X. Liao. 2011. Characterization of an effervescent atomization water mist nozzle and its fire suppression tests. Proc. Combust. Inst. 33 (2):2573–79. doi:10.1016/j.proci.2010.06.001.
  • Huang, Y., Z. Wencheng, X. Dai, and Y. Zhao. 2012. Study on water-based fire extinguishing agent formulations and properties. Procedia Eng. 45:649–54. doi:10.1016/j.proeng.2012.08.217.
  • Jensen, D. E. 1982. Alkali-metal compounds in oxygen-rich flames. A reinterpretation of experimental results. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 78 (9):2835. doi:10.1039/F19827802835.
  • Jeong, C. S., and C. Y. Lee. 2021. Experimental investigation on spray characteristics of twin-fluid nozzle for water mist and its heptane pool fire extinguishing performance. Process Saf.Environ. Prot. 148:724–36. doi:10.1016/j.psep.2021.01.037.
  • Jiang, H., M. Bi, L. Huang, Y. Zhou, and W. Gao. 2022. Suppression mechanism of ultrafine water mist containing phosphorus compounds in methane/coal dust explosions. Energy. 239:121987. doi:10.1016/j.energy.2021.121987.
  • Joseph, P., E. Nichols, and V. Novozhilov. 2013. A comparative study of the effects of chemical additives on the suppression efficiency of water mist. Fire Saf. J. 58:221–25. doi:10.1016/j.firesaf.2013.03.003.
  • Korobeinichev, O. P., A. G. Shmakov, V. M. Shvartsberg, A. A. Chernov, S. A. Yakimov, K. P. Koutsenogii, and V. I. Makarov. 2012. Fire suppression by low-volatile chemically active fire suppressants using aerosol technology. Fire Saf. J. 51:102–09. doi:10.1016/j.firesaf.2012.04.003.
  • Kwon, O. C., G. Rozenchan, and C. K. Law. 2002. Cellular instabilities and self-acceleration of outwardly propagating spherical flames. Proc. Combust. Inst. 29 (2):1775–83. doi:10.1016/S1540-7489(02)80215-2.
  • Liang, T., M. Liu, Z. Liu, W. Zhong, X. Xiao, and S. Lo. 2015. A study of the probability distribution of pool fire extinguishing times using water mist. Process Saf. Environ. Prot. 93:240–48. doi:10.1016/j.psep.2014.05.009.
  • Liang, W., J. Liu, and C. K. Law. 2017. On explosion limits of H2/CO/O2 mixtures. Combust. Flame. 179:130–37. doi:10.1016/j.combustflame.2017.01.024.
  • Linteris, G. 2002. Inhibition of premixed methane flames by manganese and tin compounds. Combust. Flame. 129 (3):221–38. doi:10.1016/S0010-2180(02)00346-2.
  • Mi, H., P. Shao, N. Luo, S. Wang, Y. Wang, X. Jiang, W. Wang, Y. Duan, and C.-M. Shu. 2024. Determination of CF3CHFCF3 suppression effects on premixed hydrogen-methane deflagration via experiment and simulation. Fuel. 358:130190. doi:10.1016/j.fuel.2023.130190.
  • O’Connor, J., V. Acharya, and T. Lieuwen. 2015. Transverse combustion instabilities: Acoustic, fluid mechanic, and flame processes. Prog. Energy Combust. Sci 49:1–39. doi:10.1016/j.pecs.2015.01.001.
  • Pei, B., S. Li, S. Yang, M. Yu, L. Chen, and R. Pan. 2022. Flame propagation inhibition study on methane/air explosion using CO2 twin-fluid water mist containing potassium salt additives. J. Loss Prev. Process Ind. 78:104817. doi:10.1016/j.jlp.2022.104817.
  • Saafi, M. A., S. Ou, Y. Jiang, H. Li, X. He, Z. Lin, Y. Gan, Z. Lu, and S. T. M. Dawson. 2022. Exploring the potential of hydrogen in decarbonizing China’s light-duty vehicle market. Int. J. Hydrog. Energy. 47 (86):36355–71. doi:10.1016/j.ijhydene.2022.08.233.
  • Sevilla, M., and A. B. Fuertes. 2013. A general and facile synthesis strategy towards highly porous carbons: Carbonization of organic salts. J. Mater. Chem. A. 1 (44):13738. doi:10.1039/C3TA13149A.
  • Tahan, M.-R. 2022. Recent advances in hydrogen compressors for use in large-scale renewable energy integration. Int. J. Hydrog. Energy 47 (83):35275–92. doi:10.1016/j.ijhydene.2022.08.128.
  • Wang, F., J. Jia, and X. Tian. 2022. Study on methane explosion suppression in diagonal pipe networks using a fine water mist containing KCl and an inert gas. ACS. Omega. 7 (37):32959–69. doi:10.1021/acsomega.2c02212.
  • Wang, S., G. Xiao, Y. Duan, and H. Mi. 2023. Effect of obstacle arrangement on premixed hydrogen flame: Eddy-dissipation concept model based numerical simulation. Int. J. Hydrog. Energy. 48 (43):16445–56. doi:10.1016/j.ijhydene.2023.01.164.
  • Wang, Z. R., L. Ni, X. Liu, J. C. Jiang, and R. Wang. 2014. Effects of N2/CO2 on explosion characteristics of methane and air mixture. J. Loss Prev. Process Ind. 31:10–15. doi:10.1016/j.jlp.2014.06.004.
  • Wen, X., M. Wang, T. Su, S. Zhang, R. Pan, and W. Ji. 2019. Suppression effects of ultrafine water mist on hydrogen/methane mixture explosion in an obstructed chamber. Int. J. Hydrog. Energy. 44 (60):32332–42. doi:10.1016/j.ijhydene.2019.10.110.
  • Xia, Y., B. Zhang, J. Zhang, B. Wang, L. Chen, R. Wang, A. G. Bekele, J. Shi, W. Wu, and Z. Wang. 2022. Experimental research on combined effect of obstacle and local spraying water fog on hydrogen/air premixed explosion. Int. J. Hydrog. Energy. 47:(94:40099–115. doi:10.1016/j.ijhydene.2022.09.152.
  • Xiao, H., R. W. Houim, and E. S. Oran. 2015. Formation and evolution of distorted tulip flames. Combust. Flame 162 (11):4084–101. doi:10.1016/j.combustflame.2015.08.020.
  • Yoshida, A., T. Okawa, W. Ebina, and H. Naito. 2015. Experimental and numerical investigation of flame speed retardation by water mist. Combust. Flame. 162 (5):1772–77. doi:10.1016/j.combustflame.2014.11.038.
  • Zhang, P., Y. Zhou, X. Cao, X. Gao, and M. Bi. 2014. Enhancement effects of methane/air explosion caused by water spraying in a sealed vessel. J. Loss Prev. Process Ind. 29:313–18. doi:10.1016/j.jlp.2014.03.014.
  • Zhang, T., Z. Han, Z. Du, Z. Zhang, and K. Liu. 2016. Application of thermal mechanism to evaluate the effectiveness of the extinguishment of CH4/air cup-burner flame by water mist with additives. Int. J. Hydrog. Energy. 41 (33):15078–88. doi:10.1016/j.ijhydene.2016.06.260.
  • Zhang, T., H. Liu, H. Han, Z. Du, and Y. Wang. 2017. Active substances study in fire extinguishing by water mist with potassium salt additives based on thermoanalysis and thermodynamics. Appl. Therm. Eng. 122:429–38. doi:10.1016/j.applthermaleng.2017.05.053.
  • Zhang, T. W., H. Liu, Z. Y. Han, Z. M. Du, and Z. D. Guo. 2017. Numerical model for the chemical kinetics of potassium species in methane/air cup-burner flames. Energy. Fuels. 31 (4):4520–30. doi:10.1021/acs.energyfuels.7b00106.
  • Zheng, R., K. N. C. Bray, and B. Rogg. 1997. Short communication. Combust Sci. Technol. 126 (1–6):389–401. doi:10.1080/00102209708935683.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.