42
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Response of Macroscopic Coal Oxidation and Pyrolysis Parameters to Different Extractants

ORCID Icon, ORCID Icon, , , , & show all
Received 30 Jan 2024, Accepted 22 Mar 2024, Published online: 05 Apr 2024

References

  • Chandaliya, V., P. Biswas, P. Dash, and D. Sharma. 2018. Producing low-ash coal by microwave and ultrasonication pretreatment followed by solvent extraction of coal. Fuel 212:422–30. doi:10.1016/j.fuel.2017.10.029.
  • Deng, J., Y. Li, and Y. Zhang. 2020. Effect of hydroxyl group (-OH) on oxidation characteristics of active groups in coal spontaneous combustion side chain. J. China Coal Soc. 45 (1):232–40. doi:10.13225/j.cnki.jccs.YG19.1507.
  • Deng, J., H. Lv, D. LI, and Y. Xiao. 2019. Effect of [BMIM][BF4] on spontaneous combustion thermal behavior of coal with different metamorphic degrees. J. China Coal Soc. 44:255–62. in Chinese.
  • Guan, H., L. Dong, and A. Zhao. 2023. Energy structure dividend, factor allocation efficiency and regional productivity growth- an empirical examination of energy restructuring in China. Energy. Policy 172:113307. doi:10.1016/j.enpol.2022.113307.
  • Guo, J., Y. Quan, H. Wen, X. Zheng, G. Cai, and Y. Jin. 2023a. The effects of solvent extraction on the functional group structure of long-flame coal. Fire 6 (8):307. doi:10.3390/fire6080307.
  • Guo, J., K. Wang, Y. Jin, H. Wen, J. Wu, and G. Cai. 2023b. Method for fine classification of coal spontaneous combustion process and its intelligent monitoring and early warning – reform of coal fire precision prevention and control technology. J. China Coal Soc. 48:111–21. in Chinese.
  • Han, G., Z. Dong, L. Zhao, and Q. Zhang. 2022. Experimental study on spontaneous combustion characteristics of large coal particles after soaking. ACS Omega. 7 (15):13102–11. doi:10.1021/acsomega.2c00521.
  • Jin, Y. 2022. Research on the mechanism of coal spontaneous combustion weakened effect based on extraction technology. Xi’an: Xi’an University of Science and Technology. [in Chinese].
  • Kang, H., J. Wang, F. Chen, T. Rong, Y. Yu, W. Ding, and H. Zuo. 2024. Investigation on the mechanism of solvothermal extraction of coals by macromolecular models. Fuel 355:129547. doi:10.1016/J.FUEL.2023.129547.
  • Li, K., R. Khanna, J. Zhang, and B. Mansoor. 2015. Comprehensive investigation of various structural features of bituminous coals using advanced analytical techniques. Energy Fuels 29 (11):7178–89. doi:10.1021/acs.energyfuels.5b02064.
  • Liu, Y., H. Wen, J. Guo, Y. Jin, S. Fan, G. Cai, and R. Liu. 2023. Correlation between oxygen concentration and reaction rate of low-temperature coal oxidation: A case study of long-flame coal. Energy 275:127483. doi:10.1016/j.energy.2023.127483.
  • Lu, W., A. Gao, Y. Liang, Z. He, J. Li, Y. Sun, S. Song, and S. Meng. 2023. Stable and highly efficient HMDS terminated m-cresol inhibitor for inhibiting coal spontaneous combustion. Energy 282:128915. doi:10.1016/j.energy.2023.128915.
  • Ma, Y., F. Ma, W. Mo, and Q. Wang. 2020. Five-stage sequential extraction of Hefeng coal and direct liquefaction performance of the extraction residue. Fuel 266:117039. doi:10.1016/j.fuel.2020.117039.
  • Ndaji, F., I. Butterfield, and K. Thomas. 1997. Changes in the macromolecular structure of coals with pyrolysis temperature. Fuel 76 (2):169–77. doi:10.1016/S0016-2361(96)00175-5.
  • Niu, H. Y., X. D. Yu, Q. Q. Sun, Y. C. Bu, Y. X. Yang, M. Tao, X. Yang, and S. W. Sun. 2023. Analysis of the thermal behavior characteristics and dynamics of coal under high primary temperature conditions in deep mines. Combust. Sci. Technol. 1–16. doi:10.1080/00102202.2023.2225210.
  • Onifade, M., and B. Genc. 2020. A review of research on spontaneous combustion of coal. Int. J. Min. Sci. Technol. 30 (3):303–11. doi:10.1016/j.ijmst.2020.03.001.
  • Onifade, M., B. Genc, A. R. Gbadamosi, A. Morgan, and T. Ngoepe. 2021. Influence of antioxidants on spontaneous combustion and coal properties. Process Saf. Environ. Prot. 148:1019–32. doi:10.1016/J.PSEP.2021.02.017.
  • Pan, R., D. Fu, Z. Xiao, and C. Leo. 2018. The inducement of coal spontaneous combustion disaster and control technology in a wide range of coal mine closed area. Environ. Earth Sci. 77 (10):1–7. doi:10.1007/s12665-018-7540-1.
  • Pan, R., C. Li, J. Chao, D. Hu, and H. Jia. 2023. Thermal properties and microstructural evolution of coal spontaneous combustion. Energy 262:125400. doi:10.1016/j.energy.2022.125400.
  • Qi, X., C. Wei, Q. Li, and L. Zhang. 2016. Controlled-release inhibitor for preventing the spontaneous combustion of coal. Nat. Hazard. 82 (2):891–901. doi:10.1007/s11069-016-2224-1.
  • Safety production industry standard of the People ‘s Republic of China. 2009. AQ/T 1068-2008, Determination of oxidation kinetics of coal spontaneous combustion tendency. Beijing: China Coal Industry Publishing House. [in Chinese].
  • Shen, X., H. Li, J. Lu, L. Lu, M. Liu, and B. Lin. 2024. Effect of resveratrol on physicochemical structure evolution of lignite during spontaneous combustion. Fuel 360:130463. doi:10.1016/J.FUEL.2023.130463.
  • Tan, B., F. Zhang, S. Meng, X. Yang, H. Wei, and J. Cheng. 2018. Analysis of influencing factors and grey correlation of oxygen consumption rate in coal oxidation at low temperature. Coal. Engine 50 (9):112–16. [in Chinese].
  • Wang, W., X. Kao, Z. Lin, and Y. Zhang. 2022. Has China’s coal consumption really peaked? - prediction and scenario analysis of China’s coal consumption peak under the double-carbon target. Front. Environ. Sci. 10:974763. doi:10.3389/FENVS.2022.974763.
  • Wang, F., M. Sun, and J. Wang. 2021. Dimethyl methylphosphonate for the suppression of coal spontaneous combustion. Combust. Sci. Technol. 195 (5):982–99. doi:10.1080/00102202.2021.1976769.
  • Wen, H., H. Wang, W. Liu, and X. Cheng. 2020. Comparative study of experimental testing methods for characterization parameters of coal spontaneous combustion. Fuel 275:117880. doi:10.1016/j.fuel.2020.117880.
  • Xiao, X., and X. Li. 2022. A novel compositional data model for predicting the energy consumption structures of Europe, Japan, and China. Environ. Dev. Sustain. 25 (10):11673–98. doi:10.1007/S10668-022-02547-5.
  • Xie, H., L. Wu, and D. Zheng. 2019. Prediction on the energy consumption and coal demand of China in 2025. J. China Coal Soc. 44 (7):1949–60. [in Chinese].
  • Xi, Z., M. Li, L. Lu, and L. Suo. 2022. Mechanism of MnSOD removing peroxy radical for inhibiting coal spontaneous combustion. Fuel 325:124967. doi:10.1016/J.FUEL.2022.124967.
  • Xu, H., M. Miao, and P. Chen. 2019. Experimental study on inhibition of spontaneous combustion of coal by composite inhibitor by infrared spectrum. Safety Envir. Protect. Min. Indust 46 (4):40–44. in Chinese.
  • Xu, X., S. Yuan, J. Li, S. Guo, and Z. Yan. 2023. Preparation of lignin-based intumescent nanogel and its mechanism of inhibiting coal spontaneous combustion. Energy 275:127513. doi:10.1016/J.ENERGY.2023.127513.
  • Yao, J., H. Ji, H. Lu, and T. Gao. 2019. Effect of tetrahydrofuran extraction on surface functional groups of coking coal and its wettability. J. Anal. Methods Chem. 2019:1285462. doi:10.1155/2019/1285462.
  • Zhang, Y., Y. Hou, D. Yang, and J. Deng. 2024. Transformation and migration of key elements during the thermal reaction of coal spontaneous combustion. Energy 290:130212. doi:10.1016/J.ENERGY.2023.130212.
  • Zhang, Y., C. Yang, Y. Li, Y. Huang, J. Zhang, Y. Zhang, and Q. Li. 2019. Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion. Fuel 242:287–94. doi:10.1016/j.fuel.2019.01.043.
  • Zhao, H., and M. Franklin. 2020. Ionic liquids for coal dissolution, extraction and liquefaction. J. Chem. Technol. Biot. 95 (9):2301–10. doi:10.1002/jctb.6489.
  • Zhou, L., J. Li, Y. Dan, C. Xie, H. Long, and H. Liu. 2019. Entering and exiting: Productivity evolution of energy supply in China. Sustainability 11 (4):983. doi:10.3390/su11040983.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.