45
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Asymptotic Structure of Strained Chain-Branching Premixed Flames Under Nonadiabatic Conditions

&
Received 21 Jul 2023, Accepted 26 Mar 2024, Published online: 09 Apr 2024

References

  • Bosch, J., D. Fernández-Galisteoa, C. Jiménez, and V. N. Kurdyumov. 2021a. Analytical study of superadiabatic small-scale combustors with a two-step chain-branching chemistry model: Lean burning below the flammability limit. Combust. Flame 235:111731. doi:10.1016/j.combustflame.2021.111731.
  • Bosch, J., D. Fernández-Galisteoa, C. Jiménez, and V. N. Kurdyumov. 2021b. Superadiabatic small-scale combustors: Asymptotic analysis of a two-step chain-branching combustion model. Proc. Combust. Inst. 39 (2):1927–35. doi:10.1016/j.proci.2022.07.065.
  • Buckmaster, J. D., and G. S. S. Ludford. 1982. Theory of laminar flames. US: Cambridge University Press.
  • Bush, W. B., and F. E. Fendell. 1970. Asymptotic analysis of laminar flame propagation for general Lewis numbers. Combust. Sci. Technol. 1 (6):421–28. doi:10.1080/00102206908952222.
  • Clavin, P., and G. Searby. 2008. Unsteady response of chain-branching premixed flames to pressure waves. Combust. Theor. Model. 12 (3):545–67. doi:10.1080/13647830701848972.
  • Dold, J. W. 2007. Premixed flames modelled with thermally sensitive intermediate branching kinetics. Combust. Theor. Model. 11 (6):909–48. doi:10.1080/13647830701294599.
  • Dold, J. W., R. W. Thatcher, A. Omon-Arancibia, and J. Redman. 2002. From one-step to chain-branching premixed flame asymptotics. Proc. Combust. Inst. 29 (2):1519–26. doi:10.1016/S1540-7489(02)80186-9.
  • Dold, J. W., R. O. Weber, R. W. Thatcher, and A. A. Shah. 2003. Flame balls with thermally sensitive intermediate kinetics. Combust. Theor. Model. 7 (1):175–203. doi:10.1088/1364-7830/7/1/310.
  • Fernández-Galisteoa, D., A. Weiss, A. L. Sánchez, and F. A. Williams. 2019. A one-step reduced mechanism for near-limit hydrogen combustion with general stoichiometry. Combust. Flame 208:1–4. doi:10.1016/j.combustflame.2019.06.018.
  • Joulin, G., A. Liñán, G. S. S. Ludford, N. Peters, and C. Schmidt-Lainé. 1985. Flames with chain-branching/chain-breaking kinetics. SIAM J. Appl. Math. 45 (3):420–34. doi:10.1137/0145024.
  • Karlovitz, B., D. W. Denniston, D. H. Knapschaefer, and F. H. Wells. 1953. Studies on turbulent flames: A. Flame propagation across velocity gradients B. turbulence measurement in flames. 4th Symp. (Int) Combust. 4 (1):613–20. doi:10.1016/S0082-0784(53)80082-2.
  • Kurdyumov, V. N., and D. Fernández-Galisteo. 2012. Asymptotic structure of premixed flames for a simple chain-branching chemistry model with finite activation energy near the flammability limit. Combust. Flame 159 (10):3110–18. doi:10.1016/j.combustflame.2012.05.002.
  • Lee, S. R., and J. S. Kim. 2022a. The asymptotic structure of strained chain-branching premixed flames. Combust. Sci. Technol. 1–30. doi:10.1080/00102202.2022.2041611.
  • Lee, S. R., and J. S. Kim. 2022b. The asymptotic structure of strained chain-branching premixed flames with nonunity lewis numbers and their extinction. Combust. Sci. Technol. 1–30. doi:10.1080/00102202.2022.2114798.
  • Lee, S. R. and J. S. Kim. 2024. The asymptotic solution of near-limit chain-branching premixed flames with the Zel’dovich-liñán two-step mechanism in the linear and fast recombination regime. Combustion and Flame to be published.
  • Libby, P. A., A. Liñán, and F. A. Williams. 1983. Strained premixed laminar flames with Nonunity Lewis Numbers. Combust. Sci. Technol. 34 (1–6):257–93. doi:10.1080/00102208308923695.
  • Libby, P. A., and F. A. Williams. 1982. Structure of Laminar Flamelets in Premixed Turbulent Flames. Combust. Flame 44 (1–3):287–303. doi:10.1016/0010-2180(82)90079-7.
  • Libby, P. A., and F. A. Williams. 1983. Strained premixed laminar flames under nonadiabatic conditions. Combust. Sci. Technol. 31 (1–2):1–42. doi:10.1080/00102208308923629.
  • Libby, P. A., and F. A. Williams. 1984. Strained premixed laminar flames with two reaction zones. Combust. Sci. Technol. 37 (5–6):221–52. doi:10.1080/00102208408923755.
  • Liñán, A. 1971. “A theoretical analysis of premixed flame propagation with an isothermal chain reaction.” Technical Report No.1. AFOSR Contract No. E00AR68-0031. INTA Madrid.
  • Liñán, A. 1974. The asymptotic structure of counterflow diffusion flames for large activation energies. Acta Astronaut. 1 (7–8):1007–39. doi:10.1016/0094-5765(74)90066-6.
  • Peters, N., and F. A. Williams. 1987. The asymptotic structure of stoichiometric methane-air flames. Combust. Flame 68 (2):185–207. doi:10.1016/0010-2180(87)90057-5.
  • Sánchez, A., and F. A. Williams. 2014. Recent advances in understanding of flammability characteristics of hydrogen. Prog. Energy Combust. Sci. 68:1–55. doi:10.1016/j.pecs.2013.10.002.
  • Seshadri, K., and N. Peters. 1983. The influence of stretch on a premixed flame with two-step kinetics. Combust. Sci. Technol. 33 (1–4):35–63. doi:10.1080/00102208308923667.
  • Seshadri, K., N. Peters, and F. A. Williams. 1994. Asymptotic analyses of stoichiometric and lean hydrogen-air flames. Combust. Flame 96 (4):407–27. doi:10.1016/0010-2180(94)90108-2.
  • Sharpe, G. 2008. Effect of thermal expansion on the linear stability of planar premixed flames for a simple chain-branching model: The high activation energy asymptotic limit. Combust. Theor. Model. 12 (4):717–38. doi:10.1080/13647830802032849.
  • Sharpe, G. 2009. Thermal-diffusion instability of premixed flames for a simple chain-branching chemistry model with finite activation energy. SIAM J. Appl. Math. 70 (3):866–84. doi:10.1137/090750366.
  • Sharpe, G., and S. A. E. G. Falle. 2011. Numerical simulations of premixed flame cellular instability for a simple chain-branching model. Combust. Flame 158 (5):925–34. doi:10.1016/j.combustflame.2011.01.026.
  • Williams, F. A. 1985. Combustion theory. US: The Benjamin/Cumming Publishing Company Inc.
  • Zel’dovich, Y. B. 1948. Teorii rasprostranenia plameni. Zh. Fiz. Khim. 22:27–49. English translation (1951), “Theory of flame propagation,” Tech. Memo. 1282, National Advisory Committee of AeronauticsWashington, DC.
  • Zel’dovich, Y. B. 1961. Chain reactions in hot flames – an approximate theory for flame velocity. Kinetika Katalis 2:305–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.