33
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Morphological Characteristics of Propane–Hydrogen Diffusion Flame: Experiments and Correlations

, , , , , & show all
Received 31 Jan 2024, Accepted 22 Apr 2024, Published online: 14 May 2024

References

  • Bahadori, M. Y., J. F. Small Jr., U. G. Hegde, L. Zhou, and D. P. Stocker, 1995. Characteristics of transitional and turbulent jet diffusion flames in microgravity. NASA Conference Publication 10174, Third International Microgravity Combustion Workshop, Cleveland, 11–13, 327–332.
  • Bi, Y., J. Chen, X. Chen, S. Lu, and C. Li. 2019. Experimental investigation of nitrogen addition effect on combustion characteristics of buoyant turbulent diffusion flame. Fuel 240:237–43. doi:10.1016/j.fuel.2018.12.001
  • Bradley, D., P. H. Gaskell, X. Gu, and A. Palacios. 2016. Jet flame heights, lift-off distances, and mean flame surface density for extensive ranges of fuels and flow rates. Combust. Flame 164:400–09. doi:10.1016/j.combustflame.2015.09.009
  • Chen, H., M. Xu, D. Hung, and H. Zhuang. 2014. Cycle-to-cycle variation analysis of early flame propagation in engine cylinder using proper orthogonal decomposition. Exp. Therm. Fluid Sci. 58:48–55. doi:10.1016/j.expthermflusci.2014.06.017
  • Chung, S., and B. Lee. 1991. On the characteristics of laminar lifted flames in a nonpremixed jet. Combust. Flame 86 (1–2):62–72. doi:10.1016/0010-2180(91)90056-H
  • Delichatsios, M. A. 1993. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships. Combust. Flame 92 (4):349–64. doi:10.1016/0010-2180(93)90148-V
  • Dou, Y., H. Liu, B. Liu, Y. Zhang, Y. Liu, X. Cheng, and C. Tao. 2021. Effects of carbon dioxide addition to fuel on flame radiation fraction in propane diffusion flames. Energy 218:119552. doi:10.1016/j.energy.2020.119552
  • Fang, J., J. W. Wang, J. Guan, Y. Zhang, and J. Wang. 2016. Momentum-and buoyancy-driven laminar methane diffusion flame shapes and radiation characteristics at sub-atmospheric pressures. Fuel 163:295–303. doi:10.1016/j.fuel.2015.09.068
  • Gao, Y., Y. Dou, C. Tao, P. He, X. Zhang, X. Huang, and X. Zhou. 2023. Numerical analysis on combustion characteristics of diffusion jet flame under different gravity environments. Case Stud. Therm. Eng. 50:103481. doi:10.1016/j.csite.2023.103481
  • Hegde, N. U., L. Zhou, and M. Bahadori. 1994. The transition to turbulence of microgravity gas jet diffusion flames. Combust. Sci. Technol. 102 (1–6):95–113. doi:10.1080/00102209408935471
  • Henriksen, M., A. Gaathaug, and J. Lundberg. 2019. Determination of under expanded H2 jet flame length with a complex nozzle geometry. Int. J. Hydrogen Energy 44 (17):8988–96. doi:10.1016/j.ijhydene.2018.07.019
  • Heskestad, G. 1983. Luminous heights of turbulent diffusion flames. Fire Saf. J. 5 (2):103–08. doi:10.1016/0379-7112(83)90002-4
  • He, P., P. Wang, K. Wang, X. Liu, C. M. Wang, C. Tao, and Y. Liu. 2019. The evolution of flame height and air flow for double rectangular pool fires. Fuel 237:486–93. doi:10.1016/j.fuel.2018.10.027
  • Heys, N., F. Roper, and P. Kayes. 1981. A mathematical model of laminar axisymmetrical natural gas flames. Comput. Fluids 9 (1):85–103. doi:10.1016/0045-7930(81)90035-9
  • Hottel, H. C., and W. R. Hawthorne. 1949. Diffusion in laminar flame jets. Symp. (Int.) Combust. 3 (1):254–66. doi:10.1016/S1062-2896(49)80034-1
  • Hui, X., D. Zheng, W. Tan, X. Xue, and W. Liu. 2023. The effects of hydrogen addition on soot formation in counterflow diffusion n-heptane flames. Int. J. Hydrogen Energy 48 (23):8707–15. doi:10.1016/j.ijhydene.2022.12.016
  • Hu, X., Q. Yu, J. Liu, and N. Sun. 2014. Investigation of laminar flame speeds of CH4/O2/CO2 mixtures at ordinary pressure and kinetic simulation. Energy 70:626–34. doi:10.1016/j.energy.2014.04.029
  • Ji, J., B. Li, H. Wan, L. Ding, and Z. Gao. 2020. Gas temperature rise and flame length induced by two buoyancy-controlled C3H8 burners aligned parallel to the cross wind. Int. J. Therm. Sci. 152:106295. doi:10.1016/j.ijthermalsci.2020.106295
  • Kalaghatigi, G. 1984. Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air. Combust. Sci. Technol. 41 (1–2):17. doi:10.1080/00102208408923819
  • Kalghatgi, G. T. 1981. Blow-out stability of gaseous jet diffusion flames. Part I: In still air. Combust. Sci. Technol. 26 (5–6):233–39. doi:10.1080/00102208108946964
  • Kang, Y., Q. Wang, X. Lu, X. Ji, S. Miao, H. Wang, Q. Guo, H.-H. He, and J. Xu. 2015. Experimental and theoretical study on the flow, mixing, and combustion characteristics of dimethyl ether, methane, and LPG jet diffusion flames. Fuel Process. Technol. 129:98–112. doi:10.1016/j.fuproc.2014.09.004
  • Kee, R., and J. A. Miller. 1978. A split-operator, finite-difference solution for axisymmetric laminar-jet diffusion flames. Aiaa J. 16 (2):169–76. doi:10.2514/3.60873
  • Lee, Y. P., M. A. Delichatsios, and G. Silcock. 2007. Heat fluxes and flame heights in facades from fires in enclosures of varying geometry. Proc. Combust. Inst. 31 (2):2521–28. doi:10.1016/j.proci.2006.08.033
  • Li, Z., X. Cheng, W. Wei, L. Qiu, and H. Wu. 2017. Effects of hydrogen addition on laminar flame speeds of methane, ethane and propane: Experimental and numerical analysis. Int. J. Hydrogen Energy 42 (38):24055–66. doi:10.1016/j.ijhydene.2017.07.190
  • Liu, G., and S. Li. 2022. Lift-off height of autoignited jet flame in hot air coflow with different O2 contents. Combust. Flame 242:112144. doi:10.1016/j.combustflame.2022.112144
  • Liu, C., J. Zhang, X. Li, Y. Pan, and W. Huang. 2023. Lift-off behaviors of the partially-premixed jet flame in a supersonic vitiated coflow. Aerosp. Sci. Technol. 132:108021. doi:10.1016/j.ast.2022.108021
  • Liu, J., and Z. Zhou. 2019. Examination of radiative fraction of small-scale pool fires at reduced pressure environments. Fire Saf. J. 110:102894. doi:10.1016/j.firesaf.2019.102894
  • Li, X., S. Xie, J. Zhang, T. Li, and X. Wang. 2021. Combustion characteristics of non-premixed CH4/CO2 jet flames in coflow air at normal and elevated temperatures. Energy 214:118981. doi:10.1016/j.energy.2020.118981
  • Lu, H., S. Liu, J. Lv, X. Li, M. A. Delichatsios, and L. Hu. 2023. A physical model on the flame structure of vertical downward turbulent jet fires. Fuel 334:126596. doi:10.1016/j.fuel.2022.126596
  • Man, X., C. Tang, L. Wei, L. Pan, and Z. Huang. 2013. Measurements and kinetic study on ignition delay times of C3H8/H2 in argon diluted oxygen. Int. J. Hydrogen Energy 38 (5):2523–30. doi:10.1016/j.ijhydene.2012.12.020
  • Miller, J. A., and R. J. Kee. 1977. Chemical nonequilibrium effects in H2-air laminar jet diffusion flames. J Phys Chem 81 (25):2534–42. doi:10.1021/j100540a035
  • Mitchell, R. E., A. F. Sarofim, and L. Clomburg. 1980. Experimental and numerical investigation of confined laminar diffusion flames. Combust. Flame 37:227–44. doi:10.1016/0010-2180(80)90092-9
  • Otsu, N. A. 1979. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9 (1):62–66. doi:10.1109/TSMC.1979.4310076
  • Palacios, A., and J. Casal. 2011. Assessment of the shape of vertical jet fires. Fuel 90 (2):824–33. doi:10.1016/j.fuel.2010.09.048
  • Papanicolaou, P. N., and E. J. List. 1987. Statistical and spectral properties of tracer concentration in round buoyant jets. Int. J. Heat Mass Transfer 30 (10):2059–71. doi:10.1016/0017-9310(87)90086-X
  • Park, B., Y. Kim, S. Paik, and C. Kang. 2021. Numerical and experimental analysis of jet release and jet flame length for qualitative risk analysis at H2 refueling station. Process Saf. Environ. Prot. 155:145–54. doi:10.1016/j.psep.2021.09.016
  • Quezada, L. A., P. R. Pagot, F. H. R. França, and F. M. Pereira. 2020. Experimental study of jet fire radiation and a new approach for optimizing the weighted multi-point source model by inverse methods. Fire Saf. J. 113:102972. doi:10.1016/j.firesaf.2020.102972
  • Roper, F. 1978. Laminar diffusion flame sizes for curved slot burners giving fan-shaped flames. Combust. Flame 31:251–58. doi:10.1016/0010-2180(78)90137-2
  • Roper, F., C. Smith, and A. Cunningham. 1977. The prediction of laminar jet diffusion flame sizes: Part II. Experimental verification. Combust. Flame 29:227–34. doi:10.1016/0010-2180(77)90113-4
  • Tao, C., B. Liu, Y. Dou, Y. Qian, Y. Zhang, and S. Meng. 2021. The experimental study of flame height and lift-off height of C3H8 diffusion flames diluted by carbon dioxide. Fuel 290:119958. doi:10.1016/j.fuel.2020.119958
  • Tao, C., Y. Liu, F. Tang, and Q. Wang. 2018. An experimental investigation of the flame height and air entrainment of ring pool fire. Fuel 216:734–37. doi:10.1016/j.fuel.2017.11.141
  • Tao, C., Y. Qian, F. Tang, and Q. Wang. 2017. Experimental investigations on temperature profile and air entrainment of buoyancy-controlled jet flame from inclined nozzle bounded the wall. Appl. Therm. Eng. 111:510–15. doi:10.1016/j.applthermaleng.2016.09.144
  • Turns, S. R. 1996. Introduction to combustion. New York, NY, USA: McGraw-Hill Companies.
  • Wang, Q., J. Yan, B. Wang, L. Chang, and A. Palacios. 2022. Experimental study on trajectory flame length and axial temperature distribution of inclined turbulent jet flames. Fire Saf. J. 131:103623. doi:10.1016/j.firesaf.2022.103623
  • Wohl, K., N. M. Kapp, and C. Gazley. 1949. The stability of open flames. In Proceedings of the symposium on combustion and flame, and explosion phenomena, 3–22. Pittsburgh.
  • Yılmaz, I., M. Tastan, M. Ilbas, and C. Tarhan. 2013. Effect of turbulence and radiation models on combustion characteristics in propane–hydrogen diffusion flames. Energy Convers. Manage. 72:179–86. doi:10.1016/j.enconman.2012.07.031
  • Yon, S., and J. C. Sautet. 2012. Flame lift-off height, velocity flow and mixing of hythane in oxy-combustion in a burner with two separated jets. Appl. Therm. Eng. 32:83–92. doi:10.1016/j.applthermaleng.2011.08.033
  • Zhang, X., L. Hu, X. Zhang, F. Tang, Y. Jiang, and Y. Lin. 2017. Flame projection distance of horizontally oriented buoyant turbulent rectangular jet fires. Combust. Flame 176:370–76. doi:10.1016/j.combustflame.2016.10.016
  • Zukoski, E. E., B. M. Cetegen, and T. Kubota. 1985. Visible structure of buoyant diffusion flames. Symp. (Int.) Combust. 20 (1):361–66. doi:10.1016/S0082-0784(85)80522-1
  • Zukoski, E. E., T. Kubota, and B. Cetegen. 1981. Entrainment in fire plumes. Fire Saf. J. 3 (2):107–21. doi:10.1016/0379-7112(81)90037-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.