54
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Combustion Kinetic Model Based on the Fast Chemistry Assumption: Application to Non-Sooty and Sooty Laminar Diffusion Flames

ORCID Icon & ORCID Icon
Received 25 Mar 2024, Accepted 11 May 2024, Published online: 20 May 2024

References

  • Ahmed, M. M., and A. Trouvé. 2021. Large eddy simulation of the unstable flame structure and gas-to-liquid thermal feedback in a medium-scale methanol pool fire. Combust. Flame 225:237–54. Elsevier Inc. doi:10.1016/j.combustflame.2020.10.055
  • Almagro, A., O. Flores, M. Vera, A. Liñán, A. L. Sánchez, and F. A. Williams. 2019. Effects of differential diffusion on nonpremixed-flame temperature. Proc. Combust. Inst. 37 (2):1757–66. Elsevier Inc. doi:10.1016/j.proci.2018.06.176
  • Ansys Fluent. 2024. https://www.ansys.com/products/fluids/ansys-fluent
  • Burke, S. P., and T. E. W. Schumann. 1928. Diffusion Flames. Ind. Eng. Chem. 20 (10):998–1004. ACS Publications. doi:10.1021/ie50226a005
  • Chatterjee, P., and Y. Wang. 2020. Numerical simulations of soot-radiation from buoyant turbulent wall-bounded diffusion flames. Fire Saf. J. 120:103105. Elsevier Ltd. doi:10.1016/j.firesaf.2020.103105
  • Chatterjee, P., and Y. Wang. 2021. Numerical simulations of soot-radiation from buoyant turbulent wall-bounded diffusion flames. Fire Saf. J. 120 (January 2020):103105. Elsevier Ltd. doi:10.1016/j.firesaf.2020.103105
  • Chatterjee, P., D. Zeng, and Y. Wang. 2021. Numerical modeling of soot radiation in optically-thin, buoyant diffusion flames at varying oxygen concentrations. Proc. Combust. Inst. 38 (3):4987–94. Elsevier Inc. doi:10.1016/j.proci.2020.08.028
  • Chatterjee, P., J. L. De Ris, Y. Wang, and S. B. Dorofeev. 2011. A model for soot radiation in buoyant diffusion flames. Proc. Combust. Inst. 33 (2):2665–71. Elsevier Inc. doi:10.1016/j.proci.2010.06.112
  • Chatterjee, P., Y. Wang, K. V. Meredith, and S. B. Dorofeev. 2015. Application of a subgrid soot-radiation model in the numerical simulation of a heptane pool fire. Proc. Combust. Inst. 35 (3):2573–80. The Combustion Institute. doi:10.1016/j.proci.2014.05.045
  • Cheatham, S., and M. Matalon. 2000. A General asymptotic theory of diffusion flames with application to cellular instability. J. Fluid Mech. 414:105–44. doi:10.1017/S0022112000008752
  • Chen, Z., J. Wen, B. Xu, and S. Dembele. 2014a. Large eddy simulation of a medium-scale methanol pool fire using the extended eddy dissipation concept. Int. J. Heat Mass Transfer 70:389–408. Elsevier Ltd. doi:10.1016/j.ijheatmasstransfer.2013.11.010
  • Chen, Z., J. Wen, B. Xu, and S. Dembele. 2014b. Large eddy simulation of a medium-scale methanol pool fire using the extended eddy dissipation concept. Int. J. Heat Mass Transfer 70:389–408. Elsevier Ltd. doi:10.1016/j.ijheatmasstransfer.2013.11.010
  • Christiansen, E. W., D. Tse Stephen, and C. K. Law. 2003. A computational study of oscillatory extinction of spherical diffusion flames. Combust. Flame 134 (4):327–37. Elsevier. doi:10.1016/S0010-2180(03)00112-3
  • Curran, H. J. 2019. Developing detailed chemical kinetic mechanisms for fuel combustion. Proc. Combust. Inst. 37 (1):57–81. Elsevier. doi:10.1016/j.proci.2018.06.054
  • Dressler, L., F. Luiz Sacomano Filho, F. Ries, H. Nicolai, J. Janicka, and A. Sadiki. 2021. Numerical prediction of turbulent spray flame characteristics using the filtered Eulerian stochastic field approach coupled to tabulated chemistry. Fluids 6 (2):50. doi:10.3390/fluids6020050
  • Fire Modeling, Simulation and Research – FM Global. 2024. https://www.fmglobal.com/research-and-resources/research-and-testing/theoretical-computational-and-experimental-research/open-source-fire-modeling
  • Fukumoto, K., J. X. Wen, M. Li, Y. Ding, and C. Wang. 2020. Numerical simulation of small pool fires incorporating liquid fuel motion. Combust. Flame 213:441–54. Elsevier Inc. doi:10.1016/j.combustflame.2019.11.047
  • Jones, W. P., A. J. Marquis, and V. N. Prasad. 2012. LES of a turbulent premixed swirl burner using the Eulerian stochastic field method. Combust. Flame 159 (10):3079–95. The Combustion Institute. doi:10.1016/j.combustflame.2012.04.008
  • Magnussen, B. F., and B. H. Hjertager. 1977. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp. (Int.) Combust. 16 (1):719–29. doi:10.1016/S0082-0784(77)80366-4
  • Maragkos, G., T. Beji, and B. Merci. 2017. Advances in modelling in CFD simulations of turbulent gaseous pool fires. Combust. Flame 181:22–38. Elsevier Inc. doi:10.1016/j.combustflame.2017.03.012
  • Maragkos, G., T. Beji, and B. Merci. 2019. Towards predictive simulations of gaseous pool fires. Proc. Combust. Inst. 37 (3):3927–34. Elsevier Inc. doi:10.1016/j.proci.2018.05.162
  • Maragkos, G., and B. Merci. 2020. On the use of dynamic turbulence modelling in fire applications. Combust. Flame 216:9–23. Elsevier Inc. doi:10.1016/j.combustflame.2020.02.012
  • Maragkos, G., and B. Merci. 2021. Grid insensitive modelling of convective heat transfer fluxes in cfd simulations of medium-scale pool fires. Fire Saf. J. 120 (January 2020):103104. Elsevier Ltd. doi:10.1016/j.firesaf.2020.103104
  • McDermott, R., K. McGrattan, and J. Floyd. 2011. A simple reaction time scale for under-resolved fire dynamics. Fire Saf. Sci. 10:809–20. doi:10.3801/IAFSS.FSS.10-809
  • Mitchell, R. E., A. F. Sarofim, and L. A. Clomburg. 1980. Experimental and numerical investigation of confined laminar diffusion flames. Combust. Flame 37:227–44. Elsevier. doi:10.1016/0010-2180(80)90092-9
  • Motaghian, S., and T. Beji. 2023a. A laminar smoke point-based soot model considering surface growth and soot reactions. Combust. Theor. Model. 28 (2):172–97. doi:10.1080/13647830.2023.2267526
  • Motaghian, S., and T. Beji. 2023b. Soot modeling in large eddy simulation of turbulent buoyant flames using the laminar smoke point and the eddy dissipation concept. Combust. Sci. Technol. (00):1–22. Taylor & Francis. doi:10.1080/00102202.2023.2284864
  • OpenFOAM-V2006. 2020. https://www.openfoam.com/news/main-news/openfoam-v20-06
  • Peters, N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10 (3):319–39. Elsevier. doi:10.1016/0360-1285(84)90114-X
  • Sikic, I., S. Dembele, and J. Wen. 2019. Non-grey radiative heat transfer modelling in LES-CFD simulated methanol pool fires. J. Quant. Spectrosc. Radiat. Transfer 234:78–89. Elsevier Ltd. doi:10.1016/j.jqsrt.2019.06.004
  • Smyth, K. C. 1999. Diffusion flame measurements of species concentrations, soot concentrations, temperature, and velocity. https://www.nist.gov/el/fire-research-division-73300/diffusion-flame-measurements
  • Sung, C. J., J. B. Liu, and C. King Law. 1995. Structural response of counterflow diffusion flames to strain rate variations. Combust. Flame 102 (4):481–92. Elsevier. doi:10.1016/0010-2180(95)00041-4
  • Valiño, L., R. Mustata, and K. Ben Letaief. 2016. Consistent behavior of Eulerian monte carlo fields at low Reynolds numbers. Flow Turbul. Combust. 96 (2):503–12. doi:10.1007/s10494-015-9687-0
  • Vilfayeau, S., J. P. White, P. B. Sunderland, A. W. Marshall, and A. Trouvé. 2016. Large eddy simulation of flame extinction in a turbulent line fire exposed to air-nitrogen co-flow. Fire Saf. J. 86 (April):16–31. Elsevier. doi:10.1016/j.firesaf.2016.09.003
  • Wang, C. J., H. R. Liu, and J. X. Wen. 2018. An improved pasr-based soot model for turbulent fires. Appl. Therm. Eng. 129:1435–46. Elsevier Ltd. doi:10.1016/j.applthermaleng.2017.10.129
  • Wang, Y., and S. Ho Chung. 2016. Strain rate effect on sooting characteristics in laminar counterflow diffusion flames. Combust. Flame 165:433–44. Elsevier Inc. doi:10.1016/j.combustflame.2015.12.028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.