62
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Advance in Detection and Management for Underground Coal Fires: A Global Technological Overview

, , , , , , , , & show all
Received 11 Apr 2024, Accepted 03 Jun 2024, Published online: 21 Jun 2024

References

  • Abramowicz, A., O. Rahmonov, R. Chybiorz, and J. Ciesielczuk. 2021. Vegetation as an indicator of underground smoldering fire on coal-waste dumps. Fire. Saf. J. 121:103287. doi:10.1016/j.firesaf.2021.103287.
  • Aubourg, C., M. Jackson, M. Ducoux, and M. Mansour. 2019. Magnetite-out and pyrrhotite-in temperatures in shales and slates. Terra. Nova 31 (6):534–39. doi:10.1111/ter.12424.
  • Beamish, B. B., and J. Theiler. 2019. Coal spontaneous combustion: Examples of the self-heating incubation process. Int. J. Coal Geol. 215:103297. doi:10.1016/j.coal.2019.103297.
  • Bharti, A. K., S. K. Pal, P. Priyam, V. K. Pathak, R. Kumar, and S. K. Ranjan. 2016. Detection of illegal mine voids using electrical resistivity tomography: The case-study of Raniganj coalfield (India). Eng. Geol. 213:120–32. doi:10.1016/j.enggeo.2016.09.004.
  • Biswal, S. S., S. Raval, and A. K. Gorai. 2019. Delineation and mapping of coal mine fire using remote sensing data–a review. Int. J. Remote Sens. 40 (17):6499–529. doi:10.1080/01431161.2018.1547455.
  • Bullock, S. E. T., T. F. J. Hälbich, and P. Lindsay. 2001. Environmental impacts associated with an abandoned mine in the Witbank coalfield, South Africa. Int. J. Coal Geol. 45 (2–3):195–216. doi:10.1016/S0166-5162(00)00033-1.
  • Chatterjee, R. S. 2006. Coal fire mapping from satellite thermal IR data – a case example in Jharia coalfield, Jharkhand, India. ISPRS J. Photogramm. Remote Sens. 60 (2):113–28. doi:10.1016/j.isprsjprs.2005.12.002.
  • Cheng, X. J., H. Wen, Y. H. Xu, S. X. Fan, and S. J. Ren. 2021. Environmental treatment technology for complex coalfield fire zone in a close distance coal seam—A case study. J. Therm. Anal. Calorim. 144 (2):563–74. doi:10.1007/s10973-020-10302-z.
  • Chen, X., J. H. Peng, Z. Y. Song, Y. Z. Zheng, and B. Y. Zhang. 2022. Monitoring persistent coal fire using Landsat time series data from 1986 to 2020. IEEE T. Geosci. Remote. Sens 60:1–16. doi:10.1109/TGRS.2022.3142350.
  • Chen, Y., Z. H. Suo, J. Li, J. Wei, F. Cao, H. H. Sun, H. Li, Y. Gao, Q. Li, Y. Yue, et al. 2023. Active–Passive remote sensing identification of underground coal fire zones with joint constraints of temperature and surface deformation time series. IEEE J. Sel. Top. Appl. Earth. Obs. Remote. Sens 17:894–915. doi:10.1109/JSTARS.2023.3335293.
  • Chen, K., B. Zhang, M. Guo, Y. W. Chen, H. Deng, B. L. Yang, S. Liu, F. Ma, F. Zhu, Z. Gong, et al. 2020. Photoacoustic trace gas detection of ethylene in high-concentration methane background based on dual light sources and fiber-optic microphone. Sensor. Actuat. B-Chem 310:127825. doi:10.1016/j.snb.2020.127825.
  • Corwin, R. F., and D. B. Hoover. 1979. The self-potential method in geothermal exploration. Geophysics. 44 (2):226–45. doi:10.1190/1.1440964.
  • Danish, E., and M. Onder. 2020. Application of fuzzy logic for predicting of mine fire in underground coal mine. Saf. Health Work 11 (3):322–34. doi:10.1016/j.shaw.2020.06.005.
  • Deng, J., S. Ge, H. Qi, F. Zhou, and B. Shi. 2021. Underground coal fire emission of spontaneous combustion, Sandaoba coalfield in Xinjiang, China: Investigation and analysis. Sci. Total. Environ. 777:146080. doi:10.1016/j.scitotenv.2021.146080.
  • Deng, J. C., F. B. Zhou, B. B. Shi, J. L. Torero, H. N. Qi, P. Liu, S. Ge, Z. Wang, and C. Chen. 2020. Waste heat recovery, utilization and evaluation of coalfield fire applying heat pipe combined thermoelectric generator in Xinjiang, China. Energy 207:118303. doi:10.1016/j.energy.2020.118303.
  • Dentoni, V., S. Da Pelo, M. M. Aghdam, P. Randaccio, A. Loi, N. Careddu, and A. Bernardini. 2020. Natural radioactivity and radon exhalation rate of Sardinian dimension stones. Constr. Build. Mater. 247:118377. doi:10.1016/j.conbuildmat.2020.118377.
  • Duba, A. 1983. Electrical conductivity of Colorado oil shale to 900 °C. Fuel 62 (8):966–72. doi:10.1016/0016-2361(83)90172-2.
  • Duba, A. G. 1977. Electrical conductivity of coal and coal char. Fuel 56 (4):441–43. doi:10.1016/0016-2361(77)90074-6.
  • du, B., Y. T. Liang, and F. C. Tian. 2021. Detecting concealed fire sources in coalfield fires: An application study. Fire. Saf. J. 121:103298. doi:10.1016/j.firesaf.2021.103298.
  • Dunnington, L., and M. Nakagawa. 2017. Fast and safe gas detection from underground coal fire by drone fly over. Environ. Pollut. 229:139–45. doi:10.1016/j.envpol.2017.05.063.
  • Engle, M. A., L. F. Radke, E. L. Heffern, J. M. K. O’Keefe, J. C. Hower, C. D. Smeltzer, J. M. Hower, R. A. Olea, R. J. Eatwell, D. R. Blake, et al. 2012. Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA. Sci. Total Environ. 420:146–59. doi:10.1016/j.scitotenv.2012.01.037.
  • Etiope, G., and G. Martinelli. 2002. Migration of carrier and trace gases in the geosphere: An overview. Phys. Earth. Planet. In 129 (3–4):185–204. doi:10.1016/S0031-9201(01)00292-8.
  • Feng, L., M. Dong, B. Qin, J. Pang, and S. Babaee. 2024. H2 production enhancement in underground coal gasification with steam addition: Effect of injection conditions. Energy 291:130379. doi:10.1016/j.energy.2024.130379.
  • Feng, L., J. Liu, H. Xin, L. Jiang, Y. Wu, and S. Babaee. 2024. Effect of turbulent fluctuation on the ignition of millimeter particle: Experimental studies and numerical modelling with a new correlation of nusselt number. Particuology 91:168–75. doi:10.1016/j.partic.2024.03.002.
  • Fitterman, D. V. 1983. Modeling of self-potential anomalies near vertical dikes. Geophysics 48 (2):171–80. doi:10.1190/1.1441456.
  • Gangopadhyay, P. K., K. Lahiri-Dutt, and K. Saha. 2006. Application of remote sensing to identify coalfires in the Raniganj Coalbelt, India. Int. J. Appl. Earth. Obs. 8 (3):188–95. doi:10.1016/j.jag.2005.09.001.
  • Gao, L. Y., B. Tan, L. Fan, H. Y. Wang, X. M. Li, W. Lu, and Y. Jiang. 2024. Comparison and analysis of spontaneous combustion control between coal storage silos and biomass silos. Energy 286:129623. doi:10.1016/j.energy.2023.129623.
  • Gao, R. X., H. Q. Zhu, Q. Liao, B. L. Qu, L. T. Hu, and H. R. Wang. 2022. Detection of coal fire by deep learning using ground penetrating radar. Measurement 201:111585. doi:10.1016/j.measurement.2022.111585.
  • Han, Z., X. Y. Kang, K. Singha, J. C. Wu, and X. Q. Shi. 2024. Real-time monitoring of in situ chemical oxidation (ISCO) of dissolved TCE by integrating electrical resistivity tomography and reactive transport modeling. Water Research 252:121195. doi:10.1016/j.watres.2024.121195.
  • Hong, X. P., H. D. Liang, S. Lv, Y. R. Jia, T. C. Zhao, and W. L. Liang. 2017. Mercury emissions from dynamic monitoring holes of underground coal fires in the Wuda Coalfield, inner Mongolia, China. Int. J. Coal Geol. 181:78–86. doi:10.1016/j.coal.2017.08.013.
  • Huang, W., Y. Tang, Q. Guo, and D. Ma. 2023. Variations of smoldering spread characteristics of Shanxi anthracite during forward smoldering propagation: Effect of ventilation rate. Fuel 342:127862. doi:10.1016/j.fuel.2023.127862.
  • Hui, Z. J., Y. H. Liu, C. C. Yin, Y. Su, X. Y. Ren, B. Zhang, and B. Xiong. 2021. Detection of coal spontaneous combustion using the TEM method: A synthetic study. Pure. Appl. Geophys. 178 (10):3987–4000. doi:10.1007/s00024-021-02829-5.
  • Hu, X., Q. Sun, Q. M. Shi, N. Q. Wang, J. S. Geng, and S. Z. Xue. 2023. Radon exhalation characteristics after pyrolysis of long flame coal. Sci. Total Environ. 904:167228. doi:10.1016/j.scitotenv.2023.167228.
  • Ide, T. S., N. Crook, and F. M. Orr Jr. 2011. Magnetometer measurements to characterize a subsurface coal fire. Int. J. Coal Geol. 87 (3–4):190–96. doi:10.1016/j.coal.2011.06.007.
  • Jiang, L. M., H. Lin, J. W. Ma, B. Kong, and Y. Wang. 2011. Potential of small-baseline SAR interferometry for monitoring land subsidence related to underground coal fires: Wuda (Northern China) case study. Remote Sens. Environ. 115 (2):257–68. doi:10.1016/j.rse.2010.08.008.
  • Kang, Y. M., Y. C. Xu, Y. Wang, Y. Q. Wu, and Q. Q. Tan. 2022. Underground transient electromagnetic real-time imaging system for coal mine water disasters. Measurement 203:111709. doi:10.1016/j.measurement.2022.111709.
  • Karanam, V., M. Motagh, S. Garg, and K. Jain. 2021. Multi-sensor remote sensing analysis of coal fire induced land subsidence in Jharia Coalfields, Jharkhand, India. Int. J. Appl. Earth. Obs. 102:102439. doi:10.1016/j.jag.2021.102439.
  • Karaoulis, M., A. Revil, and D. Mao. 2014. Localization of a coal seam fire using combined self-potential and resistivity data. Int. J. Coal Geol. 128–129:109–18. doi:10.1016/j.coal.2014.04.011.
  • Kars, M., C. Aubourg, and J. P. Pozzi. 2023. Impact of temperature increase on the formation of magnetic minerals in shales. The example of Tournemire, France. Phys. Earth. Planet. In 338:107021. doi:10.1016/j.pepi.2023.107021.
  • Kataka, M. O., A. R. Matiane, and B. D. O. Odhiambo. 2018. Chemical and mineralogical characterization of highly and less reactive coal from Northern Natal and Venda-Pafuri coalfields in South Africa. J. Afr. Earth. Sci. 137:278–85. doi:10.1016/j.jafrearsci.2017.10.019.
  • Kayet, N., K. Pathak, C. P. Singh, B. K. Bhattacharya, R. K. Chaturvedi, A. S. Brahmandam, and C. Mandal. 2024. Detection and mapping of vegetation stress using AVIRIS-NG hyperspectral imagery in coal mining sites. Adv. Space Res. 73 (2):1368–78. doi:10.1016/j.asr.2023.03.002.
  • Kim, A. G. 2004. Locating fires in abandoned underground coal mines. Int. J. Coal Geol. 59 (1–2):49–62. doi:10.1016/j.coal.2003.11.003.
  • Kim, J., S. Y. Lin, R. P. Singh, C. W. Lan, and H. W. Yun. 2021. Underground burning of Jharia coal mine (India) and associated surface deformation using In SAR data. Int. J. Appl. Earth. Obs. 103:102524. doi:10.1016/j.jag.2021.102524.
  • Kong, B., Z. Liu, and Q. G. Yao. 2021. Study on the electromagnetic spectrum characteristics of underground coal fire hazardous and the detection criteria of high temperature anomaly area. Environ. Earth Sci. 80 (3):89. doi:10.1007/s12665-021-09380-5.
  • Kong, B., E. Y. Wang, and Z. H. Li. 2018. The effect of high temperature environment on rock properties—an example of electromagnetic radiation characterization. Environ. Sci. Pollut. Res. 25 (29):29104–14. doi:10.1007/s11356-018-2940-z.
  • Kong, B., E. Y. Wang, Z. H. Li, and W. Lu. 2019b. Study on the feature of electromagnetic radiation under coal oxidation and temperature rise based on multifractal theory. Fractals 27 (3):1–14. doi:10.1142/S0218348X19500385.
  • Kong, B., E. Y. Wang, Z. H. Li, and Y. Niu. 2017. Time-varying characteristics of electromagnetic radiation during the coal-heating process. Int. J. Heat Mass Tran. 108:434–42. doi:10.1016/j.ijheatmasstransfer.2016.12.043.
  • Kong, B., E. Y. Wang, W. Lu, and Z. H. Li. 2019a. Application of electromagnetic radiation detection in high-temperature anomalous areas experiencing coalfield fires. Energy 189:116144. doi:10.1016/j.energy.2019.116144.
  • Kuenzer, C., and G. B. Stracher. 2012. Geomorphology of coal seam fires. Geomorphology 138 (1):209–22. doi:10.1016/j.geomorph.2011.09.004.
  • Kumari, K., P. Dey, C. Kumar, D. Pandit, S. S. Mishra, V. Kisku, S. K. Chaulya, S. K. Ray, and G. M. Prasad. 2021. UMAP and LSTM based fire status and explosibility prediction for sealed-off area in underground coal mine. Process Saf. Environ. Prot. 146:837–52. doi:10.1016/j.psep.2020.12.019.
  • Kumar, S., and S. K. Pal. 2020. Underground coal fire mapping using analysis of Self-Potential (SP) data collected from Akashkinaree Colliery, Jharia Coalfield, India. J. Geol. Soc. India 95 (4):350–58. doi:10.1007/s12594-020-1443-y.
  • Kus, J. 2017. Impact of underground coal fire on coal petrographic properties of high volatile bituminous coals: A case study from coal fire zone No. 3.2 in the Wuda Coalfield, Inner Mongolia Autonomous Region, North China. Int. J. Coal Geol. 171:185–211. doi:10.1016/j.coal.2016.12.002.
  • Lassalle, G. 2021. Monitoring natural and anthropogenic plant stressors by hyperspectral remote sensing: Recommendations and guidelines based on a meta-review. Sci. Total Environ. 788:147758. doi:10.1016/j.scitotenv.2021.147758.
  • Liang, M., Y. C. Liang, H. D. Liang, Z. Rao, and H. F. Cheng. 2018. Polycyclic aromatic hydrocarbons in soil of the backfilled region in the Wuda coal fire area, Inner Mongolia, China. Ecotoxicol. Environ. Saf. 165:434–39. doi:10.1016/j.ecoenv.2018.08.065.
  • Liang, Y. T., Y. L. Yang, S. D. Guo, F. C. Tian, and S. F. Wang. 2023. Combustion mechanism and control approaches of underground coal fires: A review. Int. J. Coal. Sci. Technol. 10 (1):24. doi:10.1007/s40789-023-00581-w.
  • Li, H., K. Y. Li, and W. Chen. 2022. Comparing induced polarization effect on semi-airborne and airborne transient electromagnetic data: A numerical study. J. Appl. Geophys. 198:104556. doi:10.1016/j.jappgeo.2022.104556.
  • Li, Y. F., Y. M. Ma, C. T. Zheng, D. Yu, L. E. Hu, S. Yang, F. Song, Y. Li, S. Liu, Z. Zhang, et al. 2024. Near-infrared wide-range dual-gas sensor system for simultaneous detection of methane and carbon monoxide in coal mine environment. Spectrochim Acta A 307:123581. doi:10.1016/j.saa.2023.123581.
  • Li, P. F., Q. Sun, L. Xue, J. S. Geng, H. L. Jia, T. Luo, and X. Zheng. 2023. Pore structure evolution and radon exhalation characteristics of sandstone after loading and unloading. Int. J. Rock Mech. Min. Sci. 170:105502. doi:10.1016/j.ijrmms.2023.105502.
  • Li, S. K., F. C. Tian, W. Z. Jiang, M. Y. Chen, and Z. R. Li. 2023. Experimental investigation on coal desorption characteristics and spontaneous combustion properties evolution under the coupled effect of temperature and pressure. Fuel 351:128829. doi:10.1016/j.fuel.2023.128829.
  • Liu, Y., X. Y. Qi, D. Y. Luo, Y. Q. Zhang, and J. T. Qin. 2024. Detection and management of coal seam outcrop fire in China: A case study. Sci. Rep. 14 (1):4609. doi:10.1038/s41598-024-55304-1.
  • Liu, J. L., Y. J. Wang, Y. Li, L. B. Dang, X. X. Liu, H. F. Zhao, and S. Yan. 2019. Underground coal fires identification and monitoring using time-series In SAR with persistent and distributed scatterers: A case study of miquan coal fire zone in Xinjiang, China. IEEE. Access 7:164492–506. doi:10.1109/ACCESS.2019.2952363.
  • Liu, J. L., Y. J. Wang, S. Y. Yan, F. Zhao, Y. Li, L. B. Dang, X. Liu, Y. Shao, and B. Peng. 2021. Underground coal fire detection and monitoring based on landsat-8 and sentinel-1 Data sets in Miquan fire area, XinJiang. Remote Sens. 13 (6):1141. doi:10.3390/rs13061141.
  • Liu, Y. H., Y. F. Zhong, S. Shi, and L. P. Zhang. 2024. Scale-aware deep reinforcement learning for high resolution remote sensing imagery classification. ISPRS J. Photogramm. Remote Sens. 209:296–311. doi:10.1016/j.isprsjprs.2024.01.013.
  • Li, B. L., E. Y. Wang, Z. H. Li, X. Cao, X. F. Liu, and M. Zhang. 2023. Automatic recognition of effective and interference signals based on machine learning: A case study of acoustic emission and electromagnetic radiation. Int. J. Rock Mech. Min. Sci. 170:105505. doi:10.1016/j.ijrmms.2023.105505.
  • Li, Q., Y. Xiao, K. Zhong, C. Shu, H. Lü, J. Deng, and S. Wu. 2020. Overview of commonly used materials for coal spontaneous combustion prevention. Fuel 275:117981. doi:10.1016/j.fuel.2020.117981.
  • Lu, X., J. Deng, Y. Xiao, X. Zhai, C. Wang, and X. Yi. 2022. Recent progress and perspective on thermal-kinetic, heat and mass transportation of coal spontaneous combustion hazard. Fuel 308:121234. doi:10.1016/j.fuel.2021.121234.
  • Ma, Z. J., Q. Y. Di, D. Lei, Y. Gao, J. Zhu, and G. Q. Xue. 2020. The optimal survey area of the semi-airborne TEM method. J. Appl. Geophys. 172:103884. doi:10.1016/j.jappgeo.2019.103884.
  • Maeda, N., and H. Tonooka. 2023. Early stage forest fire detection from Himawari-8 AHI images using a modified MOD14 algorithm combined with machine learning. Sensors 23 (1):210. doi:10.3390/s23010210.
  • Mansor, S. B., A. P. Cracknell, B. V. Shilin, and V. I. Gornyi. 1994. Monitoring of underground coal fires using thermal infrared data. Int. J. Remote Sens. 15 (8):1675–85. doi:10.1080/01431169408954199.
  • Ma, L., and S. Q. Yang. 2023. Study on the difference in oxidation characteristics of coal and Gangue from the same coal seam. Combust. Sci. Technol. 1–17. doi:10.1080/00102202.2023.2282604.
  • Melody, S. M., and F. H. Johnston. 2015. Coal mine fires and human health: What do we know? Int. J. Coal Geol. 152:1–14. doi:10.1016/j.coal.2015.11.001.
  • Miao, G. D., Z. H. Li, L. T. Sun, and Y. L. Yang. 2021. Experimental study on pore-fracture evolution law in the thermal damage process of coal. Combust. Sci. Technol. 193 (4):677–701. doi:10.1080/00102202.2019.1669574.
  • Mishra, R. K., P. N. S. Roy, V. K. Singh, and J. K. Pandey. 2018. Detection and delineation of coal mine fire in Jharia coal field, India using geophysical approach: A case study. J. Earth Syst. Sci. 127 (8):107. doi:10.1007/s12040-018-1010-8.
  • Muduli, L., P. K. Jana, and D. P. Mishra. 2018. Wireless sensor network based fire monitoring in underground coal mines: A fuzzy logic approach. Process Saf. Environ. Prot. 113:435–47. doi:10.1016/j.psep.2017.11.003.
  • Muduli, L., D. P. Mishra, and P. K. Jana. 2018. Application of wireless sensor network for environmental monitoring in underground coal mines: A systematic review. J. Netw. Comput. Appl. 106:48–67. doi:10.1016/j.jnca.2017.12.022.
  • Muduli, L., D. P. Mishra, and P. K. Jana. 2020. Optimized fuzzy logic-based fire monitoring in underground coal mines: Binary particle swarm optimization approach. IEEE Syst. J. 14 (2):3039–46. doi:10.1109/JSYST.2019.2939235.
  • Neyamadpour, A., W. A. T. Wan Abdullah, and S. Taib. 2010. Use of four-electrode arrays in three-dimensional electrical resistivity imaging survey. Stud. Geophys. Geod. 54 (2):299–311. doi:10.1007/s11200-010-0016-8.
  • Onifade, M., and B. Genc. 2020. A review of research on spontaneous combustion of coal. Int. J. Min. Sci. Technol. 30 (3):303–11. doi:10.1016/j.ijmst.2020.03.001.
  • Pan, R. K., C. Li, J. K. Chao, D. M. Hu, and H. L. Jia. 2023a. Thermal properties and microstructural evolution of coal spontaneous combustion. Energy 262:125400. doi:10.1016/j.energy.2022.125400.
  • Pan, R. K., T. Zhang, J. K. Chao, D. M. Hu, W. Liu, and L. Wang. 2023b. Study on thermal effects and gases derivation of spontaneous combustion of gas-containing coal. Fuel 354:129336. doi:10.1016/j.fuel.2023.129336.
  • Prakash, A., and R. P. 1999. Surface fires in Jharia coalfield, India-their distribution and estimation of area and temperature from TM data. Int. J. Remote Sens. 20 (10):1935–46. doi:10.1080/014311699212281.
  • Prakash, A., A. K. Saraf, R. P. Gupta, and R. M. Sundaram. 1995. Surface thermal anomalies associated with underground fires in Jharia coal mines, India. Int. J. Remote Sens. 16 (12):2105–09. doi:10.1080/01431169508954544.
  • Qi, T. Y., X. Y. Wei, G. R. Feng, F. Zhang, D. K. Zhao, and J. Guo. 2022. A method for reducing transient electromagnetic Noise: Combination of variational mode decomposition and wavelet denoising algorithm. Measurement 198:111420. doi:10.1016/j.measurement.2022.111420.
  • Querol, X., X. Zhuang, O. Font, M. Izquierdo, A. Alastuey, I. Castro, B. L. van Drooge, T. Moreno, J. O. Grimalt, J. Elvira, et al. 2011. Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs: A review and new experimental data. Int. J. Coal Geol. 85 (1):2–22. doi:10.1016/j.coal.2010.09.002.
  • Raju, A., and K. Mehdi. 2023. SBAS-InSAR analysis of regional ground deformation accompanying coal fires in Jharia coalfield, India. Geocarto. Int. 38 (1):2167004. doi:10.1080/10106049.2023.2167004.
  • Rawat, P., K. D. Singh, H. Chaouchi, and J. M. Bonnin. 2014. Wireless sensor networks: A survey on recent developments and potential synergies. J. Supercomput. 68 (1):1–48. doi:10.1007/s11227-013-1021-9.
  • Ren, S. J., Y. N. Zhang, Z. Y. Song, Y. Xiao, J. Deng, and C. M. Shu. 2023. Initial exploration on potential fire hazards detection from coal spontaneous combustion applied by acoustic wave. Sci. Total Environ. 897:165475. doi:10.1016/j.scitotenv.2023.165475.
  • Riyas, M. J., T. H. Syed, H. Kumar, and C. Kuenzer. 2021. Detecting and analyzing the evolution of subsidence due to coal fires in Jharia coalfield, India using sentinel-1 sar data. Remote Sens. 13 (8):1521. doi:10.3390/rs13081521.
  • Rochman, M. I., V. Sathya, D. Fernandez, N. Nunez, A. S. Ibrahim, W. Payne, and M. Ghosh. 2023. A comprehensive analysis of the coverage and performance of 4G and 5G deployments. Comput. Netw. 237:110060. doi:10.1016/j.comnet.2023.110060.
  • Sadeghi, S., N. Soltanmohammadlou, and F. Nasirzadeh. 2022. Applications of wireless sensor networks to improve occupational safety and health in underground mines. J. Saf. Res. 83:8–25. doi:10.1016/j.jsr.2022.07.016.
  • Saini, V., R. P. Gupta, and M. K. Arora. 2016. Environmental impact studies in coalfields in India: A case study from Jharia coal-field. Renew. Sust. Energ. Rev. 53:1222–39. doi:10.1016/j.rser.2015.09.072.
  • Salim, L. A., and D. M. Bonotto. 2019. Radon exhalation rate and indoor exposure in a Brazilian coal mine. J. Radioanal. Nucl. Chem. 320 (3):587–95. doi:10.1007/s10967-019-06531-8.
  • Shan, B., G. Wang, F. Cao, D. Wu, W. X. Liang, and R. Y. Sun. 2019. Mercury emission from underground coal fires in the mining goaf of the Wuda Coalfield, China. Ecotoxicol. Environ. Saf. 182:109409. doi:10.1016/j.ecoenv.2019.109409.
  • Shao, Z. L., R. Deng, T. Zhou, F. Cao, H. H. Sun, L. Chen, Y. Yuan, and X. Zhong. 2021. 3D localization of coal fires based on self-potential data: Sandbox experiments. Pure. Appl. Geophys. 178 (11):4583–603. doi:10.1007/s00024-021-02883-z.
  • Shao, P., H. J. Hou, W. L. Wang, and W. F. Wang. 2023. Geochemistry and mineralogy of fly ash from the high-alumina coal, Datong Coalfield, Shanxi, China. Ore Geol. Rev. 158:105476. doi:10.1016/j.oregeorev.2023.105476.
  • Shao, Z. L., X. Y. Jia, X. X. Zhong, D. M. Wang, J. Wei, Y. M. Wang, and L. Chen. 2018. Detection, extinguishing, and monitoring of a coal fire in Xinjiang, China. Environ. Sci. Pollut. Res. 25 (26):26603–16. doi:10.1007/s11356-018-2715-6.
  • Shao, S., H. Liu, L. Zhang, J. Yan, and J. Wei. 2022. Model-Data Co-Driven Integration of detection and imaging for geosynchronous targets with Wideband Radar. IEEE Trans. Geosci. Remote. Sens. 60:1–16. doi:10.1109/TGRS.2022.3208339.
  • Shao, Z. L., D. M. Wang, Y. M. Wang, and X. X. Zhong. 2014. Theory and application of magnetic and self-potential methods in the detection of the Heshituoluogai coal fire, China. J. Appl. Geophys. 104:64–74. doi:10.1016/j.jappgeo.2014.02.014.
  • Shao, Z. L., D. M. Wang, Y. M. Wang, X. X. Zhong, X. F. Tang, and D. D. Xi. 2016. Electrical resistivity of coal-bearing rocks under high temperature and the detection of coal fires using electrical resistance tomography. Geophys. J. Int. 204 (2):1316–31. doi:10.1093/gji/ggv525.
  • Shao, Z. L., G. F. Zhang, T. Zhou, J. Wei, F. Cao, Y. Zhang, H. Li, H. Sun, S. Qing, T. Chen, et al. 2023. Locating the scope and depth of coal fires based on magnetic and electrical data. Pure. Appl. Geophys. 180 (11):3883–900. doi:10.1007/s00024-023-03350-7.
  • Sharma, R., D. Gupta, Z. Polkowski, and S. L. Peng. 2021. Introduction to the special section on big data analytics and deep learning approaches for 5G and 6G communication networks (VSI-5g6g). Comput. Electr. Eng. 95:107507. doi:10.1016/j.compeleceng.2021.107507.
  • Sharygin, V. V., E. V. Sokol, and D. I. Belakovskii. 2009. Fayalite-sekaninaite paralava from the Ravat coal fire (central Tajikistan). Rus. Geol. Geophys. 50 (8):703–21. doi:10.1016/j.rgg.2009.01.001.
  • Shen, L., and P. Andrews-Speed. 2001. Economic analysis of reform policies for small coal mines in China. Resour. Policy 27 (4):247–54. doi:10.1016/S0301-4207(02)00009-0.
  • Shi, J. H., Z. C. Feng, D. Zhou, X. C. Li, and Q. R. Meng. 2023. Analysis of the permeability evolution law of in situ steam pyrolysis of bituminous coal combing with in situ CT technology. Energy 263:126009. doi:10.1016/j.energy.2022.126009.
  • Shi, Q. L., B. T. Qin, Y. H. Hao, and H. B. Li. 2022. Experimental investigation of the flow and extinguishment characteristics of gel-stabilized foam used to control coal fire. Energy 247:123484. doi:10.1016/j.energy.2022.123484.
  • Shi, X. X., and K. Wu. 2011. Research and application of comprehensive electromagnetic detection technique in spontaneous combustion area of coalfields. Int. Conf. Remote. Sens. Environ. Tran. Eng. 50:65–69. doi:10.1109/RSETE.2011.5965033.
  • Shi, X., C. Zhang, P. Jin, Y. Zhang, F. Jiao, S. Xu, and W. Cao. 2024. Eliminating scale effect: Development and attenuation of coal spontaneous combustion. Fuel 357:130073. doi:10.1016/j.fuel.2023.130073.
  • Singh, N., R. S. Chatterjee, D. Kumar, D. C. Panigrahi, and R. Mujawdiya. 2022. Retrieval of precise land surface temperature from ASTER night-time thermal infrared data by split window algorithm for improved coal fire detection in Jharia coalfield, India. Geocarto. Int. 37 (3):926–43. doi:10.1080/10106049.2020.1753820.
  • Singh, A. K., R. V. K. Singh, M. P. Singh, H. Chandra, and N. K. Shukla. 2007. Mine fire gas indices and their application to Indian underground coal mine fires. Int. J. Coal Geol. 69 (3):192–204. doi:10.1016/j.coal.2006.04.004.
  • Sinha, P. R. 1986. Mine fires in Indian coalfields. Energy 11 (11–12):1147–54. doi:10.1016/0360-5442(86)90051-4.
  • Song, Z. Y., X. Y. Huang, C. Kuenzer, H. Q. Zhu, J. C. Jiang, X. H. Pan, and X. Zhong. 2020. Chimney effect induced by smoldering fire in a U-shaped porous channel: A governing mechanism of the persistent underground coal fires. Process Saf. Environ. Prot. 136:136–47. doi:10.1016/j.psep.2020.01.029.
  • Song, Z. Y., and C. Kuenzer. 2014. Coal fires in China over the last decade: A comprehensive review. Int. J. Coal Geol. 133:72–99. doi:10.1016/j.coal.2014.09.004.
  • Song, W. J., Y. M. Wang, and Z. L. Shao. 2017. Categorical modeling on electrical anomaly of room-and-pillar coal mine fires and application for field electrical resistivity tomography. J. Appl. Geophys. 136:474–83. doi:10.1016/j.jappgeo.2016.11.023.
  • Srivardhan, V., S. K. Pal, J. Vaish, S. Kumar, A. K. Bharti, and P. Priyam. 2016. Particle swarm optimization inversion of self-potential data for depth estimation of coal fires over East Basuria colliery, Jharia coalfield, India. Environ. Earth Sci. 75 (8):688. doi:10.1007/s12665-015-5222-9.
  • Stracher, G. B., and T. P. Taylor. 2004. Coal fires burning out of control around the world: Thermodynamic recipe for environmental catastrophe. Int. J. Coal Geol. 59 (1–2):7–17. doi:10.1016/j.coal.2003.03.002.
  • Sun, H. F., N. Y. Zhang, D. R. Li, S. B. Liu, and Q. Y. Ye. 2023. The first semi-airborne transient electromagnetic survey for tunnel investigation in very complex terrain areas. Tunn. Undergr. Sp. Tech. 132:104893. doi:10.1016/j.tust.2022.104893.
  • Tang, Y., F. Hou, X. X. Zhong, A. C. Huang, X. Y. Jia, and B. Peng. 2023. Combination of heat energy extraction and fire control in underground high-temperature zones of coal fire areas. Energy 278:127801. doi:10.1016/j.energy.2023.127801.
  • Tang, Y. B., and H. Wang. 2019. Experimental investigation on microstructure evolution and spontaneous combustion properties of secondary oxidation of lignite. Process Saf. Environ. Prot. 124:143–50. doi:10.1016/j.psep.2019.01.031.
  • Tan, C., J. C. Wang, and Z. L. Li. 2019. A frequency measurement method based on optimal multi-average for increasing proton magnetometer measurement precision. Measurement 135:418–23. doi:10.1016/j.measurement.2018.10.016.
  • Taraba, B., and Z. Michalec. 2011. Effect of longwall face advance rate on spontaneous heating process in the gob area – CFD modelling. Fuel 90 (8):2790–97. doi:10.1016/j.fuel.2011.03.033.
  • Tatiana, S., G. Igor, and B. Alexey. 2012. Control of combustion area using electrical resistivity method for underground coal gasification. Int. J. Min. Sci. Technol. 22 (3):351–55. doi:10.1016/j.ijmst.2012.04.012.
  • Tian, Z. M., H. D. Fan, F. Cao, and L. He. 2023. Monitoring surface subsidence using distributed scatterer insar with an improved statistically homogeneous pixel selection method in coalfield fire zones. Remote Sens. 15 (14):3574. doi:10.3390/rs15143574.
  • Tian, Y., X. Yang, J. Yang, K. K. Mao, Y. J. Yao, and H. S. Liang. 2022. Evolution dynamic of intelligent construction strategy of coal mine enterprises in China. Heliyon 8 (10):e10933. doi:10.1016/j.heliyon.2022.e10933.
  • Vaish, J., and S. K. Pal. 2015. Subsurface coal fire mapping using magnetic survey at East Basuria Colliery, Jharkhand. J. Geol. Soc. India 86 (4):438–44. doi:10.1007/s12594-015-0331-3.
  • Voigt, S., A. Tetzlaff, J. Z. Zhang, C. Künzer, B. Zhukov, G. Strunz, D. Oertel, A. Roth, P. van Dijk, and H. Mehl. 2004. Integrating satellite remote sensing techniques for detection and analysis of uncontrolled coal seam fires in North China. Int. J. Coal Geol. 59 (1–2):121–36. doi:10.1016/j.coal.2003.12.013.
  • Vu, D. T., and N. Tien-Thanh. 2021. Spatial pattern of land surface temperatures and its relation to underground coal fires in the Khanh Hoa Coal Field, North-East of Vietnam. Arab. J. Geosci. 14 (3):145. doi:10.1007/s12517-020-06433-0.
  • Wang, C. P., L. J. Chen, Z. J. Bai, J. Deng, L. Liu, and Y. Xiao. 2022. Study on the dynamic evolution law of spontaneous coal combustion in high-temperature regions. Fuel 314:123036. doi:10.1016/j.fuel.2021.123036.
  • Wang, H. Y., X. Y. Fang, Y. C. Li, Z. Y. Zheng, and J. T. Shen. 2021. Research and application of the underground fire detection technology based on multi-dimensional data fusion. Tunn. Undergr. Sp. Tech. 109:103753. doi:10.1016/j.tust.2020.103753.
  • Wang, H. Y., C. Fan, J. L. Li, Y. W. Zhang, X. D. Sun, and S. Y. Xing. 2023. Dynamic characteristics of near-surface spontaneous combustion gas flux and its response to meteorological and soil factors in coal fire area. Environ. Res. 217:114817. doi:10.1016/j.envres.2022.114817.
  • Wang, E. Y., X. Q. He, J. P. Wei, B. S. Nie, and D. Z. Song. 2011. Electromagnetic emission graded warning model and its applications against coal rock dynamic collapses. Int. J. Rock Mech. Min. Sci. 48 (4):556–64. doi:10.1016/j.ijrmms.2011.02.006.
  • Watts, R. J., and A. L. Teel. 2019. Hydroxyl radical and non-hydroxyl radical pathways for trichloroethylene and perchloroethylene degradation in catalyzed H2O2 propagation systems. Water Res. 159:46–54. doi:10.1016/j.watres.2019.05.001.
  • Wu, X., G. Q. Xue, G. Y. Fang, X. Li, and Y. J. Ji. 2019. The development and applications of the semi-airborne electromagnetic system in China. IEEE. Access 7:104956–66. doi:10.1109/ACCESS.2019.2930961.
  • Xia, T., M. Ma, J. A. Huisman, C. P. Zheng, C. L. Gao, and D. Q. Mao. 2023. Monitoring of in-situ chemical oxidation for remediation of diesel-contaminated soil with electrical resistivity tomography. J. Contam. Hydrol. 256:104170. doi:10.1016/j.jconhyd.2023.104170.
  • Xiao, F. 2015. Gravity correlation imaging with a moving data window. J. Appl. Geophys. 112:29–32. doi:10.1016/j.jappgeo.2014.11.004.
  • Xiao, Y., L. Yin, Y. Tian, S. Li, X. Zhai, C. Shu, and S.-J. Ren. 2023. Sustainable utilisation and transformation of the thermal energy from coalfield fires: A comprehensive review. Appl. Therm. Eng. 233:121164. doi:10.1016/j.applthermaleng.2023.121164.
  • Xie, J., S. Xue, W. M. Cheng, and G. Wang. 2011. Early detection of spontaneous combustion of coal in underground coal mines with development of an ethylene enriching system. Int. J. Coal Geol. 85 (1):123–27. doi:10.1016/j.coal.2010.10.007.
  • Xiong, S. Q., and C. C. Yu. 2013. Characteristics and mechanisms of rock magnetic enhancement in underground coal spontaneous combustion areas—Examples of the wuda coal mine of inner Mongolia and Rujigou Coal Mine in Ningxia. Chin. J. Geophys. 56 (6):2827–36. doi:10.1002/cjg2.20070.
  • Xu, Y., H. D. Fan, and L. B. Dang. 2021. Monitoring coal seam fires in Xinjiang using comprehensive thermal infrared and time series InSAR detection. Int. J. Remote Sens. 42 (6):2220–45. doi:10.1080/01431161.2020.1823045.
  • Yang, Y., and J. Li. 2022. Investigation of macro-kinetics of coal-oxygen reactions under varying oxygen concentrations: Towards the understanding of combustion characteristics in underground coal fires. Process Saf. Environ. Prot. 160:232–41. doi:10.1016/j.psep.2022.02.009.
  • Yang, Z., T. R. Sun, S. Kleindienst, D. Straub, R. Kretzschmar, L. T. Angenent, and A. Kappler. 2021. A coupled function of biochar as geobattery and geoconductor leads to stimulation of microbial Fe(III) reduction and methanogenesis in a paddy soil enrichment culture. Soil Biol. Biochem. 163:108446. doi:10.1016/j.soilbio.2021.108446.
  • Yan, S. Y., K. Shi, Y. Li, J. L. Liu, and H. F. Zhao. 2020. Integration of satellite remote sensing data in underground coal fire detection: A case study of the Fukang region, Xinjiang, China. Front. Earth Sci. 14 (1):1–12. doi:10.1007/s11707-019-0757-9.
  • Yuan, G., Y. J. Wang, F. Zhao, T. Wang, L. X. Zhang, M. Hao, S. Yan, L. Dang, and B. Peng. 2021. Accuracy assessment and scale effect investigation of UAV thermography for underground coal fire surface temperature monitoring. Int. J. Appl. Earth. Obs. 102:102426. doi:10.1016/j.jag.2021.102426.
  • Zhang, Y. L., J. M. Wu, C. S. Zhou, T. Ren, J. F. Wang, and L. P. Chang. 2021. Study on the Intrinsic exothermic reaction of coal with oxygen at low temperature by DSC profile subtraction method. Combust. Sci. Technol. 193 (14):2464–81. doi:10.1080/00102202.2020.1746288.
  • Zhang, B. F., F. Xiao, and W. B. Jin. 2023. Burnt coal field detection via magnetic exploration. Environ. Earth Sci. 82 (7):160. doi:10.1007/s12665-023-10843-0.
  • Zhao, J. Y., H. Q. Ming, J. J. Song, S. P. Lu, Y. Y. Xiao, Y. L. Zhang, and C.-M. Shu. 2023. Preoptimal analysis of phase characteristic indicators in the entire process of coal spontaneous combustion. J. Loss. Prevent. Proc. Ind. 84:105131. doi:10.1016/j.jlp.2023.105131.
  • Zhao, C. W., Y. Z. Pan, S. J. Ren, Y. Gao, H. Y. Wu, and G. Ma. 2024. Accurate vegetation destruction detection using remote sensing imagery based on the three-band difference vegetation index (TBDVI) and dual-temporal detection method. Int. J. Appl. Earth. Obs. 127:103669. doi:10.1016/j.jag.2024.103669.
  • Zhao, Y., J. Wu, P. Zhang, and P. Xiao. 2012. Approximate relationship of coal bed methane and magnetic characteristics of rock via magnetic susceptibility logging. J. Geophys. Eng. 9 (1):98–104. doi:10.1088/1742-2132/9/1/012.
  • Zhu, Z. M., Z. G. Shan, Y. H. Pang, W. Wang, M. Chen, G. C. Li, H. Sun, and A. Revil. 2024. The Transient Electromagnetic (TEM) Method reveals the role of tectonic faults in seawater intrusion at Zhoushan islands (Hangzhou Bay, China). Eng. Geol. 330:107425. doi:10.1016/j.enggeo.2024.107425.
  • Zhu, H. Q., Z. Y. Song, B. Tan, and Y. Z. Hao. 2013. Numerical investigation and theoretical prediction of self-ignition characteristics of coarse coal stockpiles. J. Loss. Prevent. Proc. Ind. 26 (1):236–44. doi:10.1016/j.jlp.2012.11.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.