60
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical Research of Flame Propagation Process in a Supersonic Combustor with Multi-Strut

, , , , &
Received 11 Nov 2023, Accepted 07 Jun 2024, Published online: 19 Jun 2024

References

  • An, B., M. Sun, Z. Wang, and J. Chen. 2020. Flame stabilization enhancement in a strut-based supersonic combustor by shock wave generators. Aerosp. Sci. Technol. 104:105942. doi:10.1016/j.ast.2020.105942.
  • Cai, Z., Z.-G. Wang, M.-B. Sun, Q. Li, and H.-B. Wang. 2015. Numerical investigation on ignition and flame propagation process of partially covered cavity in a supersonic flow. Mod. Phys. Lett. B 29 (23):1550132. doi:10.1142/S0217984915501328.
  • Cai, Z., J. Zhu, M. Sun, Z. Wang, and X.-S. Bai. 2018. Ignition processes and modes excited by laser-induced plasma in a cavity-based supersonic combustor. Appl. Energy 228:1777–82. doi:10.1016/j.apenergy.2018.07.079.
  • Candon, M. J., and H. Ogawa. 2018. Numerical analysis and design optimization of supersonic after-burning with strut fuel injectors for scramjet engines. Acta Astronaut. 147:281–96. doi:10.1016/j.actaastro.2018.04.012.
  • Cao, R., J. Chang, J. Tang, W. Bao, D. Yu, and Z. Wang. 2015. Switching control of thrust regulation and inlet unstart protection for scramjet engine based on min strategy. Aerosp. Sci. Technol. 40:96–103. doi:10.1016/j.ast.2014.11.001.
  • Chandrasekhar, C., V. Ramanujachari, and T. K. K. Reddy. 2012. Experimental investigations of hydrocarbon fueled scramjet combustor by employing high temperature materials for the construction of fuel injection struts. Int. J. Sci. Technol. 1(12):671–678.
  • Chang, J., J. Zhang, W. Bao, and D. Yu. 2018. Research progress on strut-equipped supersonic combustors for scramjet application. Prog. Aerosp. Sci. 103:1–30. doi:10.1016/j.paerosci.2018.10.002.
  • Choubey, G., and K. M. Pandey. 2018. Effect of different wall injection schemes on the flow-field of hydrogen fuelled strut-based scramjet combustor. Acta Astronaut. 145:93–104. doi:10.1016/j.actaastro.2018.01.034.
  • Choubey, G., K. M. Pandey, A. Maji, T. Deshmukhya, and A. Debbarma. 2017. Computational investigation of multi-strut injection of hydrogen in a scramjet combustor. Mater. Today: Proc. 4 (2):2608–14. doi:10.1016/j.matpr.2017.02.115.
  • Choubey, G., K. M. Pandey, D. Sharma, and A. Debbarma. 2016. Computational simulation of multi-strut central lobed injection of hydrogen in a scramjet combustor. Perspect. Sci. 8:222–24. doi:10.1016/j.pisc.2016.04.032.
  • Croquer, S., O. Lamberts, S. Poncet, S. Moreau, and Y. Bartosiewicz. 2022. Large eddy simulation of a supersonic air ejector. Appl. Therm. Eng. 209:118177. doi:10.1016/j.applthermaleng.2022.118177.
  • Diego, S. 2019. Ignition and flame propagation in cavity-fueled supersonic flameholder. AIAA Paper 7 (11):1443.
  • Echekki, T., and J. H. Chen. 2003. Direct numerical simulation of autoignition in non-homogeneous hydrogen-air mixtures. Combust. Flame 134 (3):169–91. doi:10.1016/S0010-2180(03)00088-9.
  • Feng, R., Y. Huang, J. Zhu, Z. Wang, M. Sun, H. Wang, and Z. Cai. 2021. Ignition and combustion enhancement in a cavity-based supersonic combustor by a multi-channel gliding arc plasma. Exp. Therm. Fluid Sci. 120:110248. doi:10.1016/j.expthermflusci.2020.110248.
  • Feng, G., J. Zhang, M. Chen, J. Gao, and W. Bao. 2023. Mathematical representation of liquid jet diffusion characteristics effected with evaporation process in supersonic crossflow. Fuel 353:129110. doi:10.1016/j.fuel.2023.129110.
  • Feng, R., J. Zhu, Z. Wang, M. Sun, H. Wang, Z. Cai, B. An, and L. Li. 2021. Ignition modes of a cavity-based scramjet combustor by a gliding arc plasma. Energy 214:118875. doi:10.1016/j.energy.2020.118875.
  • Feng, R., J. Zhu, Z. Wang, F. Zhang, Y. Ban, G. Zhao, Y. Tian, C. Wang, H. Wang, Z. Cai, et al. 2022. Suppression of combustion mode transitions in a hydrogen-fueled scramjet combustor by a multi-channel gliding arc plasma. Combust. Flame 237:111843. doi:10.1016/j.combustflame.2021.111843.
  • Fu, Y., C. Yu, Z. Yan, and X. Li. 2019. DNS analysis of the effects of combustion on turbulence in a supersonic H2/air jet flow. Aerosp. Sci. Technol. 93:105362. doi:10.1016/j.ast.2019.105362.
  • Huang, W., W. Liu, S. Li, Z. Xia, J. Liu, and Z. Wang. 2012. Influences of the turbulence model and the slot width on the transverse slot injection flow field in supersonic flows. Acta Astronaut. 73:1–9. doi:10.1016/j.actaastro.2011.12.003.
  • Karaca, M., S. Zhao, I. Fedioun, and N. Lardjane. 2019. Implicit large eddy simulation of vitiation effects in supersonic air/H2 combustion. Aerosp. Sci. Technol. 89:89–99. doi:10.1016/j.ast.2019.03.050.
  • Kireeti, S. K., G. R. Sastry, and S. K. Gugulothu. 2022. Numerical investigation on implication of innovative hydrogen strut in comparison with multi strut injector on performance and combustion characteristics in a scramjet combustor. Int. J. Hydrogen Energy 47 (99):41932–46. doi:10.1016/j.ijhydene.2022.01.079.
  • Liu, C., Z. Wang, M. Sun, H. Wang, P. Li, and J. Yu. 2018. Characteristics of the hydrogen jet combustion through multiport injector arrays in a scramjet combustor. Int. J. Hydrogen Energy 43 (52):23511–22. doi:10.1016/j.ijhydene.2018.10.213.
  • Li, Q., J. Zhu, Y. Tian, M. Sun, M. Wan, B. Yan, T. Luo, Y. Sun, C. Wang, T. Tang, et al. 2023. Investigation of ignition and flame propagation in an axisymmetric supersonic combustor with laser-induced plasma. Phys. Fluids 35 (12):125133. doi:10.1063/5.0170239.
  • Luo, T., J. Zhu, M. Sun, R. Feng, Y. Tian, Q. Li, M. Wan, and Y. Sun. 2023. MCGA-assisted ignition process and flame propagation of a scramjet at mach 2.0. Chin. J. Aeronaut. 36 (7):378–87. doi:10.1016/j.cja.2023.03.042.
  • Qiu, H., L. Lin, G. Feng, J. Zhang, and W. Bao. 2023. Ignition process in a large aspect ratio supersonic combustor based on multi-strut with liquid kerosene. Phys. Fluids 35 (5):055137. doi:10.1063/5.0151854.
  • Suneetha, L., P. Randive, and K. M. Pandey. 2020. Numerical investigation on implications of four strut injectors on combustion characteristics of a doubly-dual cavity-based scramjet combustor. Int. J. Hydrogen Energy 45 (56):32128–44. doi:10.1016/j.ijhydene.2020.08.238.
  • Sun, M., and Z. Hu. 2018. Formation of surface trailing counter-rotating vortex pairs downstream of a sonic jet in a supersonic cross-flow. J. Fluid Mech. 850:551–83. doi:10.1017/jfm.2018.455.
  • Sun, M.-B., Z.-G. Wang, J.-H. Liang, and H. Geng. 2008. Flame characteristics in supersonic combustor with hydrogen injection upstream of cavity flameholder. J. Propul. Power 24 (4):688–96. doi:10.2514/1.34970.
  • Tian, Y., M. Guo, W. Ran, J. Le, and F. Zhong. 2022. Experimental investigation of effects of pulsed injection on flow structure and flame development in a kerosene-fueled scramjet with pilot hydrogen. Phys. Fluids 34 (5):055109. doi:10.1063/5.0094932.
  • Tian, Y., X. Zeng, S. Yang, F. Zhong, and J. Le. 2018. Study on the effects of thermal throat on flame stabilization in a kerosene fueled supersonic combustor. Energy Convers. Manage. 166:98–105. doi:10.1016/j.enconman.2018.04.023.
  • Tian, Y., J. Zhu, M. Sun, H. Wang, Y. Huang, R. Feng, B. Yan, Y. Sun, and Z. Cai. 2023. Enhancement of blowout limit in a mach 2.92 cavity-based scramjet combustor by a gliding arc discharge. Proc. Combust. Inst. 39 (4):5697–705. doi:10.1016/j.proci.2022.07.101.
  • Vanyai, T., M. Bricalli, S. Brieschenk, and R. R. Boyce. 2018. Scramjet performance for ideal combustion processes. Aerosp. Sci. Technol. 75:215–26. doi:10.1016/j.ast.2017.12.021.
  • Wang, Z., M. Sun, H. Wang, J. Yu, J. Liang, and F. Zhuang. 2015. Mixing-related low frequency oscillation of combustion in an ethylene-fueled supersonic combustor. Proc. Combust. Inst. 35 (2):2137–44. doi:10.1016/j.proci.2014.09.005.
  • Wang, Z., H. Wang, and M. Sun. 2014. Review of cavity-stabilized combustion for scramjet applications. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 228 (14):2718–35. doi:10.1177/0954410014521172.
  • Wang, H., Z. Wang, M. Sun, and H. Wu. 2013. Combustion modes of hydrogen jet combustion in a cavity-based supersonic combustor. Int. J. Hydrogen Energy 38 (27):12078–89. doi:10.1016/j.ijhydene.2013.06.132.
  • Wang, X., F. Zhong, H. Gu, and X. Zhang. 2015. Numerical study of combustion and convective heat transfer of a mach 2.5 supersonic combustor. Appl. Therm. Eng. 89:883–96. doi:10.1016/j.applthermaleng.2015.06.071.
  • Yao, W., Y. Yuan, X. Li, J. Wang, K. Wu, and X. Fan. 2018. Comparative study of elliptic and round scramjet combustors fueled by RP-3. J. Propul. Power 34 (3):772–86. doi:10.2514/1.B36721.
  • Yoo, C. S., R. Sankaran, and J. H. Chen. 2009. Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: Flame stabilization and structure. J. Fluid. Mech. 640:453–81. doi:10.1017/S0022112009991388.
  • Yu, W., C. Yue, Y. Fan, and Y. Deng. 2023. Influence of strut on trapped vortex cavity flameholder: Ignition and flame propagation performances. Acta Astronaut. 204:132–42. doi:10.1016/j.actaastro.2022.12.020.
  • Zhang, J., J. Chang, Z. Wang, L. Gao, and W. Bao. 2019. Flame propagation and flashback characteristics in a kerosene fueled supersonic combustor equipped with strut/wall combined fuel injectors. Aerosp. Sci. Technol. 93:105303. doi:10.1016/j.ast.2019.105303.
  • Zhang, J., Z. Wang, C. Liu, M. Sun, and H. Wang. 2023. Computational realization of turbulent combustion in a scramjet combustor stabilized by a lobed strut. Int. J. Hydrogen Energy 48 (10):4073–86. doi:10.1016/j.ijhydene.2022.10.259.
  • Zhu, S., X. Xu, and P. Ji. 2017. Flame stabilization and propagation in dual-mode scramjet with staged-strut injectors. Aiaa J. 55 (1):171–79. doi:10.2514/1.J054974.
  • Zhu, S., X. Xu, Q. Yang, and Y. Jin. 2018. Intermittent back-flash phenomenon of supersonic combustion in the staged-strut scramjet engine. Aerosp. Sci. Technol. 79:70–74. doi:10.1016/j.ast.2018.05.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.