25
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Research on the Explosion Reaction Mechanism of Volatile Gases from Coal Dust Pyrolysis

, , &
Received 10 Mar 2024, Accepted 10 Jun 2024, Published online: 17 Jun 2024

References

  • Amyotte, P. R. 2014. Some myths and realities about dust explosions. Process Saf. Environ. Prot. 92 (4):292–99. doi:10.1016/j.psep.2014.02.013.
  • Bai, C., G. Gong, Q. Liu, Y. Chen, and G. Niu. 2011. The explosion overpressure field and flame propagation of methane/air and methane/coal dust/air mixtures. Safety Sci. 49 (10):1349–54. doi:10.1016/j.ssci.2011.05.005.
  • Botelho, T., M. Costa, M. Wilk, and A. Magdziarz. 2018. Evaluation of the combustion characteristics of raw and torrefied grape pomace in a thermogravimetric analyzer and in a drop tube furnace. Fuel 212:95–100. doi:10.1016/j.fuel.2017.09.118.
  • Bu, Y., C. Yuan, P. Amyotte, C. Li, J. Cai, and G. Li. 2019. Ignition hazard of non-metallic dust clouds exposed to hotspots versus electrical sparks. J. Hazard Mater. 365:895–904. doi:10.1016/j.jhazmat.2018.11.078.
  • Chen, G., S. Zuo, J. Zhang, A. Zhang, H. Deng, X. Wen, Q. Zhang, and Z. Shen. 2022. Experimental and numerical simulation of effects of CO2/N2 concentration and initial temperature on combustion characteristics of biomass syngas. J. Saudi Chem. Soc. 26 (4):101490. doi:10.1016/j.jscs.2022.101490.
  • Coats, A. W., and J. Redfern. 1964. Kinetic parameters from thermogravimetric data. Nature 201 (4914):68–69. doi:10.1038/201068a0.
  • Deng, J., J. Zhao, Y. Zhang, A. Huang, X. Liu, X. Zhai, and C. Wang. 2016. Thermal analysis of spontaneous combustion behavior of partially oxidized coal. Process Saf. Environ. Prot. 104:218–24. doi:10.1016/j.psep.2016.09.007.
  • Dong, H., R. Li, W. Zhao, Y. Zhang, X. Chen, Q. Zhang, M. Cao, and F. Liu. 2023. Chemical kinetics properties and the influences of different hydrogen blending ratios on reactions of natural gas. Case Stud. Therm. Eng. 41:102676. doi:10.1016/j.csite.2022.102676.
  • Hong, S., Z. Liu, E. Zhao, S. Lin, L. Qiu, J. Qian, H. Liu, and S. Xia. 2017. Comparison of behavior and microscopic characteristics of first and secondary explosions of coal dust. J. Loss Prev. Process Ind. 49:382–94. doi:10.1016/j.jlp.2017.08.005.
  • Huang, Q., and R. Honaker. 2016. Optimized reagent dosage effect on rock dust to enhance rock dust dispersion and explosion mitigation in underground coal mines. Powder Technol. 301:1193–200. doi:10.1016/j.powtec.2016.08.004.
  • Jayaraman, K., I. Gokalp, E. Bonifaci, and N. Merlo. 2015. Kinetics of steam and CO2 gasification of high ash coal–char produced under various heating rates. Fuel 154:370–79. doi:10.1016/j.fuel.2015.02.091.
  • Jayaraman, K., V. Kök, and I. Gökalp. 2020. Combustion mechanism and model free kinetics of different origin coal samples: Thermal analysis approach. Energy 204:117905. doi:10.1016/j.energy.2020.117905.
  • Kundu, S. K., J. Zanganeh, D. Eschebach, B. Moghtaderi, S. K. Kundu, J. Zanganeh, and D. Eschebach. 2018. Explosion severity of methane–coal dust hybrid mixtures in a ducted spherical vessel. Powder Technol. 323:95–102. doi:10.1016/j.powtec.2017.09.041.
  • Kundu, S. K., J. Zanganeh, and B. Moghtaderi. 2016. A review on understanding explosions from methane–air mixture. J. Loss Prev. Process Ind. 40:507–23. doi:10.1016/j.jlp.2016.02.004.
  • Li, Q., B. Lin, H. Dai, and S. Zhao. 2012. Explosion characteristics of H2/CH4/air and CH4/coal dust/air mixtures. Powder Technol. 229:222–28. doi:10.1016/j.powtec.2012.06.036.
  • Li, X., Z. Liu, S. Hong, J. Qian, S. Lin, and H. Liu. 2021. Analysis of the difference between the harm of coal dust explosion and its solid residue explosion based on explosion grade and gaseous residue flammability. Combust. Sci. Technol. 193 (5):835–50. doi:10.1080/00102202.2019.1675155.
  • Lin, S., Z. Liu, J. Qian, and X. Li. 2019. Comparison on the explosivity of coal dust and of its explosion solid residues to assess the severity of re-explosion. Fuel 251:438–46. doi:10.1016/j.fuel.2019.04.080.
  • Liu, Z., S. Lin, S. Zhang, E. Wang, and G. Liu. 2016. Observations of microscopic characteristics of post-explosion coal dust samples. J. Loss Prev. Process Ind. 43:378–84. doi:10.1016/j.jlp.2016.06.021.
  • Liu, Z., X. Li, J. Qian, S. Lin, and S. Zhang. 2017. A study of the characteristics of gaseous and solid residues after coal dust explosions. Combust. Sci. Technol. 189 (9):1639–58. doi:10.1080/00102202.2017.1318857.
  • Li, Q., C. Yuan, Q. Tao, Y. Zheng, and Y. Zhao. 2018. Experimental analysis on post-explosion residues for evaluating coal dust explosion severity and flame propagation behaviors. Fuel 215:417–28. doi:10.1016/j.fuel.2017.11.093.
  • Li, H., F. Zhai, S. Li, R. Lou, F. Wang, X. Chen, C. Shu, and M. Yu. 2022. Macromorphological features and formation mechanism of particulate residues from methane/air/coal dust gas–solid two-phase hybrid explosions: An approach for material evidence analysis in accident investigation. Fuel 315:123209. doi:10.1016/j.fuel.2022.123209.
  • Mlonka-Medrala, A., P. Evangelopoulos, M. Sieradzka, M. Zajemska, and A. Magdziarz. 2021. Pyrolysis of agricultural waste biomass towards production of gas fuel and high-quality char: Experimental and numerical investigations. Fuel 296:120611. doi:10.1016/j.fuel.2021.120611.
  • Moroń, W., and W. Rybak. 2015. Ignition behaviour and flame stability of different ranks coals in oxy fuel atmosphere. Fuel 161:174–81. doi:10.1016/j.fuel.2015.08.065.
  • Nie, B., J. Gong, L. Yang, C. Peng, Y. Fan, and L. Zhang. 2021. Experimental analysis on gas and solid residues of pre- and post-explosion coal dust. Energy Fuels 35 (2):1727–40. doi:10.1021/acs.energyfuels.0c03338.
  • Nie, B., J. Gong, L. Yang, C. Peng, and F. Wang. 2021. Experimental investigations on explosion characteristics of different ranks coal dust in horizontal pipeline. Combust. Sci. Technol. 193 (16):2890–906. doi:10.1080/00102202.2020.1768082.
  • Nie, B., X. He, R. Zhang, W. Chen, and J. Zhang. 2011. The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation. J. Hazard Mater. 192 (2):741–47. doi:10.1016/j.jhazmat.2011.05.083.
  • The People’s Republic of China National Bureau of Statistics. 2021-2022. Chinese Statistical Yearbook. Beijing: China Statistics Press.
  • Qian, J., Z. Liu, S. Lin, S. Lin, and X. Li. 2020. Study on microstructure characteristics of material evidence in coal dust explosion and its significance in accident investigation. Fuel 265:116992. doi:10.1016/j.fuel.2019.116992.
  • Qian, J., Z. Liu, H. Liu, S. Hong, and G. Liu. 2019. Characterization of the products of explosions of varying concentrations of coal dust. Combust. Sci. Technol. 191 (7):1236–55. doi:10.1080/00102202.2018.1519806.
  • Rybak, W., W. Moroń, and W. Ferens. 2019. Dust ignition characteristics of different coal ranks, biomass and solid waste. Fuel 237:606–18. doi:10.1016/j.fuel.2018.10.022.
  • Wang, J., Z. Huang, H. Kobayashi, and Y. Ogami. 2012. Laminar burning velocities and flame characteristics of CO-H2-CO2-O2 mixtures. Int. J. Hydrogen Energy 37 (24):19158–67. doi:10.1016/j.ijhydene.2012.07.103.
  • Wang, D., T. Ji, Q. Jing, W. He, Z. Fan, D. Wu, and X. Qian. 2021. Experimental study and mechanism model on the ignition sensitivity of typical organic dust clouds in O2/N2, O2/Ar and O2/CO2 atmospheres. J. Hazard Mater. 412:125108. doi:10.1016/j.jhazmat.2021.125108.
  • Wang, J., Y. Zhang, J. Wang, C. Zhou, Y. Tang, and Y. Tang. 2020. Study on chemical inhibition mechanism of DBHA on free radicals reaction during spontaneous combustion of coal. Energy Fuels 34 (5):6355–66. doi:10.1021/acs.energyfuels.0c00226.
  • Wen, H., H. Wang, W. Liu, and X. Cheng. 2020. Comparative study of experimental testing methods for characterization parameters of coal spontaneous combustion. Fuel 275:117880. doi:10.1016/j.fuel.2020.117880.
  • Wen, B., W. Xia, and C. Niu. 2020. Comparison of pyrolysis and oxidation actions on chemical and physical property of anthracite coal surface. Adv. Powder Technol. 31 (6):2447–55. doi:10.1016/j.apt.2020.04.009.
  • Zajemska, M., A. Magdziarz, J. Iwaszko, M. Skrzyniarz, and A. Poskart. 2022. Numerical and experimental analysis of pyrolysis process of RDF containing a high percentage of plastic waste. Fuel 320:123981. doi:10.1016/j.fuel.2022.123981.
  • Zhang, R., S. Liu, and S. Zheng. 2021. Characterization of nano-to-micron sized respirable coal dust: Particle surface alteration and the health impact. J. Hazard Mater. 413:125447. doi:10.1016/j.jhazmat.2021.125447.
  • Zhang, J., K. Xu, G. Reniers, and G. You. 2020. Statistical analysis the characteristics of extraordinarily severe coal mine accidents (ESCMAs) in China from 1950 to 2018. Process Saf. Environ. Prot. 133:332–40. doi:10.1016/j.psep.2019.10.014.
  • Zhao, Q., J. Liu, C. Huang, H. Zhang, H. Li, X. Chen, and H. Dai. 2021. Characteristics of coal dust deflagration under the atmosphere of methane and their inhibition by coal ash. Fuel 291:120121. doi:10.1016/j.fuel.2020.120121.
  • Zheng, Y. P., C. G. Feng, G. X. Jing, X. M. Qian, X. J. Li, Z. Y. Liu, and P. Huang. 2020. A statistical analysis of coal mine accidents caused by coal dust explosions in China. J. Loss Prev. Process Ind. 22 (4):528–32. doi:10.1016/j.jlp.2009.02.010.
  • Zhu, Y., D. Wang, Z. Shao, C. Xu, X. Zhu, X. Qi, and M. Liu. 2019. A statistical analysis of coalmine fires and explosions in China. Process Saf. Environ. Prot. 121:357–66. doi:10.1016/j.psep.2018.11.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.