24
Views
0
CrossRef citations to date
0
Altmetric
Research Article

2D Modeling and Simulation of Pyrolysis of a Thermally Thick Biomass Particle

, , &
Received 25 Mar 2024, Accepted 12 Jun 2024, Published online: 19 Jun 2024

References

  • Ahuja, P., P. C. Singh, S. N. Upadhyay, and S. Kumar. 1996. Kinetics of biomass and sewage sludge pyrolysis: Thermogravimetric and sealed reactor studies. Indian J. Chem. Techn. 3:306–12.
  • Alauddin, Z. A. B. Z., P. Lahijani, M. Mohammadi, and A. R. Mohamed. 2010. Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review. Renew. Sust. Energ. Rev. 14 (9):2852–62. doi:10.1016/j.rser.2010.07.026.
  • Anca-Couce, A., and I. Obernberger. 2016. Application of a detailed biomass pyrolysis kinetic scheme to hardwood and softwood torrefaction. Fuel 167:158–67. doi:10.1016/j.fuel.2015.11.062.
  • Babu, B. V., and A. S. Chaurasia. 2003. Modeling for pyrolysis of solid particle: Kinetics and heat transfer effects. Energ. Convers. Manage. 44 (14):2251–75. doi:10.1016/S0196-8904(02)00252-2.
  • Bamford, C. H., J. Crank, and D. H. Malan. 1946. The combustion of wood. Part I. Math. Proc. Cambridge 42 (2):166–82. doi:10.1017/S030500410002288X.
  • Basu, P., A. K. Sadhukhan, P. Gupta, S. Rao, A. Dhungana, and B. Acharya. 2014. An experimental and theoretical investigation on torrefaction of a large wet wood particle. Bioresour. Technol. 159:215–22. doi:10.1016/j.biortech.2014.02.105.
  • Beaumont, O. O., and Y. Schwob. 1984. Influence of physical and chemical parameters on wood pyrolysis. Ind. Eng. Chem. Process Des. Dev. 23 (4):637–41. doi:10.1021/i200027a002.
  • Bennadji, H., L. Khachatryan, and S. M. Lomnicki. 2018. Kinetic modeling of cellulose fractional pyrolysis. Energ. Fuel. 32 (3):3436–46. doi:10.1021/acs.energyfuels.7b03078.
  • Chan, W., A. Atreya, and H. R. Baum. 2010. Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combust. Flame 157 (3):481–94. doi:10.1016/j.combustflame.2009.10.006.
  • Chen, J., D. Fang, and F. Duan. 2018. Pore characteristics and fractal properties of biochar obtained from the pyrolysis of coarse wood in a fl uidized-bed reactor. Appl. Energ 218:54–65. doi:10.1016/j.apenergy.2018.02.179.
  • di Blasi, C., and C. Branca. 2003. Temperatures of wood particles in a hot sand bed fluidized by nitrogen. Energ. Fuel. 17 (1):247–54. doi:10.1021/ef020146e.
  • di Blasi, C., C. Branca, A. Santoro, and E. Gonzalez Hernandez. 2001. Pyrolytic behavior and products of some wood varieties. Combust. Flame 124 (1–2):165–77. doi:10.1016/S0010-2180(00)00191-7.
  • Gao, X., J. Yu, L. Lu, and W. Rogers. 2021. Coupling particle scale model and superdem-CFD for multiscale simulation of biomass pyrolysis in a packed bed pyrolyzer. AIChE J. 67 (4):e17139. doi:10.1002/aic.17139.
  • Granados, D. A., F. Chejne, and P. Basu. 2016. A two dimensional model for torrefaction of large biomass particles. J. Anal. Appl. Pyrol. 120:1–14. doi:10.1016/j.jaap.2016.02.016.
  • Gupta, P., and R. K. Saha. 2003. Generalized mathematical modeling of fluid-solid non-catalytic reactions using finite volume method: nonisothermal analysis. J. Chem. Eng. Jpn. 36 (11):1298–307. doi:10.1252/jcej.36.1298.
  • Gupta, P., and R. K. Saha. 2004. Analysis of gas–solid noncatalytic reactions in porous particles: Finite volume method. Int. J. Chem. Kinet. 36 (1):1–11. doi:10.1002/kin.10168.
  • Haseli, Y., J. A. van Oijen, and L. P. H. de Goey. 2011. A detailed one-dimensional model of combustion of a woody biomass particle. Bioresour. Technol. 102 (20):9772–82. doi:10.1016/j.biortech.2011.07.075.
  • Hoang, N. Q., M. Vanierschot, T. Croymans, R. Pittoors, and J. van Caneghem. 2020. A two-dimensional pyrolysis model for thermally thick particles. Proceedings-12th European Conference on Industrial Furnaces and Boilers. INFUB. CENERTEC. Porto.
  • Kamila, B., A. K. Sadhukhan, P. Gupta, P. Basu, and B. Acharya. 2017a. Modeling of torrefaction of small biomass particles. Biofuels 11 (2):229–38. doi:10.1080/17597269.2017.1358941.
  • Kamila, B., A. K. Sadhukhan, P. Gupta, P. Basu, B. Regmi, A. Dutta, and B. Acharya. 2017b. Two-dimensional modeling of torrefaction of a large biomass particle. Int. J. Green Energy 14 (13):1119–29. doi:10.1080/15435075.2017.1359785.
  • Koufopanos, C. A., N. Papayannakos, G. Maschio, and A. Lucchesi. 1991. Modelling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects. Can J Chem. Eng. 69 (4):907–15. doi:10.1002/cjce.5450690413.
  • Liu, H., C. Wang, J. Zhang, W. Zhao, and M. Fan. 2020. Pyrolysis kinetics and thermodynamics of typical plastic waste. Energ. Fuels 34 (2):2385–90. doi:10.1021/acs.energyfuels.9b04152.
  • Lü, X., Y. Sun, T. Lu, F. Bai, and M. Viljanen. 2014. An efficient and general analytical approach to modelling pyrolysis kinetics of oil shale. Fuel 135:182–87. doi:10.1016/j.fuel.2014.06.009.
  • Munir, S., S. S. Daood, W. Nimmo, A. M. Cunliffe, and B. M. Gibbs. 2009. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour. Technol. 100 (3):1413–18. doi:10.1016/j.biortech.2008.07.065.
  • Paulsen, A. D., B. R. Hough, C. L. Williams, A. R. Teixeira, D. T. Schwartz, J. Pfaendtner, and P. J. Dauenhauer. 2014. Fast pyrolysis of wood for biofuels: Spatiotemporally resolved diffuse reflectance insitu spectroscopy of particles. Chem Sus chem. 7 (3):765–76. doi:10.1002/cssc.201301056.
  • Peters, B. 2011. Validation of a numerical approach to model pyrolysis of biomass and assessment of kinetic data. Fuel 90 (6):2301–14. doi:10.1016/j.fuel.2011.02.003.
  • Pyle, D. L., and C. A. Zaror. 1984. Heat transfer and kinetics in the low temperature pyrolysis of solids. Chem. Eng. Sci. 39 (1):147–58. doi:10.1016/0009-2509(84)80140-2.
  • Sadhukhan, A. K., P. Gupta, T. Goyal, and R. K. Saha. 2008a. Modelling of pyrolysis of coal–biomass blends using thermogravimetric analysis. Bioresour. Technol. 99 (17):8022–26. doi:10.1016/j.biortech.2008.03.047.
  • Sadhukhan, A. K., P. Gupta, and R. K. Saha. 2008b. Modelling and experimental studies on pyrolysis of biomass particles. J. Anal. Appl. Pyrol. 81 (2):183–92. doi:10.1016/j.jaap.2007.11.007.
  • Sadhukhan, A. K., P. Gupta, and R. K. Saha. 2009. Modelling of pyrolysis of large wood particles. Bioresour. Technol. 100 (12):3134–39. doi:10.1016/j.biortech.2009.01.007.
  • Sharma, A., B. Suryawanshi, B. Mohanty, and A. N. Sawarkar. 2023. Comparison of artificial neural network and response surface methodology for evaluation of the predictive capability of bio-oil yield from pyrolysis of mangifera indica wood sawdust. Fuel 338:127251. doi:10.1016/j.fuel.2022.127251.
  • Shi, X., F. Ronsse, and J. G. Pieters. 2016. Finite element modeling of intraparticle heterogeneous tar conversion during pyrolysis of woody biomass particles. Fuel Process. Technol. 148:302–16. doi:10.1016/j.fuproc.2016.03.010.
  • Shi, X., F. Ronsse, and J. G. Pieters. 2017. Space-time integral method for simplifying the modeling of torrefaction of a centimeter-sized biomass particle. J. Anal. Appl. Pyrol. 124:486–98. doi:10.1016/j.jaap.2017.02.009.
  • Soria, J., K. Zeng, D. Asensio, D. Gauthier, G. Flamant, and G. Mazza. 2017. Comprehensive CFD modelling of solar fast pyrolysis of beech wood pellets. Fuel Process. Technol. 158:226–37. doi:10.1016/j.fuproc.2017.01.006.
  • Sreekanth, M., and A. K. Kolar. 2009. Progress of conversion in a shrinking wet cylindrical wood particle pyrolyzing in a hot fluidized bed. J. Anal. Appl. Pyrol 84 (1):53–67. doi:10.1016/j.jaap.2008.10.013.
  • Sunphorka, S., B. Chalermsinsuwan, and P. Piumsomboon. 2017. Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents. Fuel 193:142–58. doi:10.1016/j.fuel.2016.12.046.
  • Tagade, A., and A. N. Sawarkar. 2023. Valorization of millet agro-residues for bioenergy production through pyrolysis: Recent inroads, technological bottlenecks, possible remedies, and future directions. Bioresour. Technol. 384:129335. doi:10.1016/j.biortech.2023.129335.
  • Ukaew, S., J. Schoenborn, B. Klemetsrud, and D. R. Shonnard. 2018. Effects of torrefaction temperature and acid pretreatment on the yield and quality of fast pyrolysis bio-oil from rice straw. J. Anal. Appl. Pyrol 129:112–22. doi:10.1016/j.jaap.2017.11.021.
  • Wang, W., and G. Chen. 2005. Heat and mass transfer model of dielectric-material-assisted microwave freeze-drying of skim milk with hygroscopic effect. Chem. Eng. Sci. 60 (23):6542–50. doi:10.1016/j.ces.2005.05.036.
  • Wickramaarachchi, W. A. M. K. P., and M. Narayana. 2020. Pyrolysis of single biomass particle using three-dimensional computational fluid dynamics modelling. Renew. Energ. 146:1153–65. doi:10.1016/j.renene.2019.07.001.
  • Wu, W., Z. Liu, L. A. Jauregui, Q. Yu, R. Pillai, H. Cao, and S. S. Pei. 2010. Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sensor Actuat. B-Chem 150 (1):296–300. doi:10.1016/j.snb.2010.06.070.
  • Wu, Z., S. Wang, J. Zhao, L. Chen, and H. Meng. 2014. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal. Bioresour. Technol. 169:220–28. doi:10.1016/j.biortech.2014.06.105.
  • Zainal, Z. A., R. Ali, C. H. Lean, and K. N. Seetharamu. 2001. Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energ. Convers. Manage. 42 (12):1499–515. doi:10.1016/S0196-8904(00)00078-9.
  • Zeng, K., J. Soria, D. Gauthier, G. Mazza, and G. Flamant. 2016. Modeling of beech wood pellet pyrolysis under concentrated solar radiation. Renew. Energ. 9:721–29. doi:10.1016/j.renene.2016.07.051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.