45
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancing Droplet Combustion Dynamics in Trimethyl Borate-Based Blends: Exploring Energetic Phenomena

ORCID Icon, &
Received 25 Apr 2024, Accepted 12 Jun 2024, Published online: 21 Jun 2024

References

  • Al-Kheraif, A. A., A. Syed, A. M. Elgorban, D. D. Divakar, R. Shanmuganathan, and K. Brindhadevi. 2021. Experimental assessment of performance, combustion and emission characteristics of diesel engine fuelled by combined non-edible blends with nanoparticles. Fuel 295:120590. doi: 10.1016/J.FUEL.2021.120590.
  • Basha, J. S., and R. B. Anand. 2011. Role of nanoadditive blended biodiesel emulsion fuel on the working characteristics of a diesel engine. J. Renew. Sustain. Ener. 3 (2):023106. doi: 10.1063/1.3575169.
  • Basu, S., E. H. Jordan, and B. M. Cetegen. 2008. Fluid mechanics and heat transfer of liquid precursor droplets injected into high-temperature plasmas. J. Therm. Spray. Technol. 17 (1):60–72. doi: 10.1007/s11666-007-9140-6.
  • Basu, S., and A. Miglani. 2016. Combustion and heat transfer characteristics of nanofluid fuel droplets: A short review. Int. J. Heat. Mass. Transf. 96:482–503. doi: 10.1016/J.IJHEATMASSTRANSFER.2016.01.053.
  • Bello, M. N., M. L. Pantoya, K. Kappagantula, W. S. Wang, S. A. Vanapalli, D. J. Irvin, and L. M. Wood. 2015. Reaction dynamics of rocket propellant with magnesium oxide nanoparticles. Energy Fuels 29 (9):6111–17. doi: 10.1021/ACS.ENERGYFUELS.5B00905.
  • Boron Science : New Technologies and Applications. 2016. Boron science. doi: 10.1201/B11199.
  • Cernat, A., C. Pana, N. Negurescu, G. Lazaroiu, C. Nutu, D. Fuiorescu, M. Toma, and A. Nicolici. 2020. Combustion of preheated raw animal fats-diesel fuel blends at diesel engine. J. Therm. Anal. Calorim. 140 (5):2369–75. doi: 10.1007/S10973-019-08972-5.
  • Chen, P., R. Jiang, and Z. M. Chen. 2024. Global household energy consumption structure: Direct versus embodied perspective from 2000 to 2014. Energy. Ecol. Environ. 9 (1):100–12. doi: 10.1007/s40974-023-00302-8.
  • Contino, F., F. Foucher, C. Mounaïm-Rousselle, and H. Jeanmart. 2011. Combustion characteristics of tricomponent fuel blends of ethyl acetate, ethyl propionate, and ethyl butyrate in Homogeneous Charge Compression Inition (HCCI). Energy Fuels 25 (4):1497–503. doi: 10.1021/EF200193Q.
  • Dagaut, P., G. Pengloan, and A. Ristori. 2002. Oxidation, ignition and combustion of toluene: Experimental and detailed chemical kinetic modeling. Phys. Chem. Chem. Phys. 4 (10):1846–54. doi: 10.1039/B110282F.
  • Davidson, M. G., K. Wade, T. B. Marder, and A. K. Hughes, Eds. 2000. Contemporary boron chemistry. Special Publications. doi: 10.1039/9781847550644.
  • Demirbaş, A. 2006. Hydrogen and boron as recent alternative motor fuels. Energ. Source. 27 (8):741–48. doi: 10.1080/00908310490450836.
  • Doğu, Y., A. A. Yontar, and E. Kantaroğlu. 2020. Experimental investigation of effects of single and mixed alternative fuels (gasoline, CNG, LPG, acetone, naphthalene, and boron derivatives) on a commercial i-DSI engine. Energ. Source Part A 1–20. doi: 10.1080/15567036.2020.1800864.
  • Elfasakhany, A. 2016. Performance and emissions analysis on using acetone–gasoline fuel blends in spark-ignition engine. Eng. Sci. Technol. Int. J. 19 (3):1224–32. doi: 10.1016/J.JESTCH.2016.02.002.
  • Fayaz, H., M. A. Mujtaba, M. E. M. Soudagar, L. Razzaq, S. Nawaz, M. A. Nawaz, M. Farooq, A. Afzal, W. Ahmed, T. M. Y. Khan, et al. 2021. Collective effect of ternary nano fuel blends on the diesel engine performance and emissions characteristics. Fuel 293:120420. doi: 10.1016/J.FUEL.2021.120420.
  • Foelsche, R. O., R. L. Burton, and H. Krier. 1999. Boron particle ignition and combustion at 30–150 atm. Combust. Flame 117 (1–2):32–58. doi: 10.1016/S0010-2180(98)00080-7.
  • Gan, Y., and L. Qiao. 2011. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles. Combust. Flame 158 (2):354–68. doi: 10.1016/J.COMBUSTFLAME.2010.09.005.
  • Glassman, I., R. A. Yetter, and N. G. Glumac. 2015. Chemical thermodynamics and flame temperatures. Combustion 1–40. doi: 10.1016/B978-0-12-407913-7.00001-3.
  • Handbook of Boron Nanostructures. 2016. Handbook of boron nanostructures. doi:10.1201/B20934.
  • Jain, A., K. Joseph, S. Anthonysamy, and G. S. Gupta. 2011. Kinetics of oxidation of boron powder. Thermochim. Acta 514 (1–2):67–73. doi: 10.1016/J.TCA.2010.12.004.
  • Jamrozik, A., W. Tutak, M. Pyrc, M. Gruca, and M. Kočiško. 2018. Study on co-combustion of diesel fuel with oxygenated alcohols in a compression ignition dual-fuel engine. Fuel 221:329–45. doi: 10.1016/J.FUEL.2018.02.098.
  • Küçükosman, R., A. A. Yontar, and K. Ocakoglu. 2022. Nanoparticle additive fuels: Atomization, combustion and fuel characteristics. J. Anal. Appl. Pyrolysis 165:105575. doi: 10.1016/J.JAAP.2022.105575.
  • Küçükosman, R., A. A. Yontar, and K. Ocakoglu. 2023. Experimental studies on combustion and atomization characteristics of aliphatic and aromatic hydrocarbons droplets. J. Energy Inst. 108:101249. doi: 10.1016/J.JOEI.2023.101249.
  • Li, Y., L. Meng, K. Nithyanandan, T. H. Lee, Y. Lin, C. F. F. Lee, and S. Liao. 2016. Combustion, performance and emissions characteristics of a spark-ignition engine fueled with isopropanol-n-butanol-ethanol and gasoline blends. Fuel 184:864–72. doi: 10.1016/J.FUEL.2016.07.063.
  • Li, Y., K. Nithyanandan, T. H. Lee, R. M. Donahue, Y. Lin, C.-F. Lee, and S. Liao. 2019. Effect of water-containing acetone-butanol-ethanol gasoline blends on combustion, performance, and emissions characteristics of a spark-ignition engine. Energy. Convers. Manag. 117:21–30. doi: 10.1016/J.ENCONMAN.2016.02.083.
  • Marder, T. B., and Z. Lin. 2008. Contemporary metal boron chemistry I. Struct Bond 130. doi: 10.1007/978-3-540-78634-4/COVER.
  • Maua, F., and H. Bockhorn. 1995. Surface growth and oxidation of soot particles under flame conditions. Zeitschrift fur Naturforsch. Section A J. Phys. Sci. 50 (11):1009–22. doi: 10.1515/zna-1995-1107.
  • Mehta, R. N., M. Chakraborty, and P. A. Parikh. 2014. Nanofuels: Combustion, engine performance and emissions. Fuel 120:91–97. doi: 10.1016/J.FUEL.2013.12.008.
  • Miglani, A., and S. Basu. 2015a. Effect of particle concentration on shape deformation and secondary atomization characteristics of a burning nanotitania dispersion droplet. J. Heat Transfer 137 (10). doi: 10.1115/1.4030394.
  • Miglani, A., and S. Basu. 2015b. Effect of particle concentration on shape deformation and secondary atomization characteristics of a burning nanotitania dispersion droplet. J. Heat Transfer 137 (10). doi: 10.1115/1.4030394.
  • Miglani, A., S. Basu, and R. Kumar. 2014a. Insight into instabilities in burning droplets. Phys. Fluids 26 (3):032101. doi: 10.1063/1.4866866.
  • Miglani, A., S. Basu, and R. Kumar. 2014b. Suppression of instabilities in burning droplets using preferential acoustic perturbations. Combust. Flame 161 (12):3181–90. doi: 10.1016/J.COMBUSTFLAME.2014.06.010.
  • Morin, C., C. Chauveau, and I. Gökalp. 2000. Droplet vaporisation characteristics of vegetable oil derived biofuels at high temperatures. Exp. Therm. Fluid Sci. 21 (1–3):41–50. doi: 10.1016/S0894-1777(99)00052-7.
  • Norhafana, M., M. M. Noor, A. A. Hairuddin, S. Harikrishnan, K. Kadirgama, and D. Ramasamy. 2020. The effects of nano-additives on exhaust emissions and toxicity on mankind. Mater. Today: Proc. 22:1181–85. doi: 10.1016/J.MATPR.2019.12.110.
  • Owen, K., and T. Coley. 1990. Prism adaptation and viewing distance. Ophthalmic. Physiol. Optics: The J. Br 10 (1):81–85. doi: 10.2172/1038533.
  • Ozsezen, A. N., and M. Canakci. 2011. Performance and combustion characteristics of alcohol–gasoline blends at wide-open throttle. Energy 36 (5):2747–52. doi: 10.1016/J.ENERGY.2011.02.014.
  • Pang, W., L. T. De Luca, X. Fan, O. G. Glotov, and F. Zhao. 2019. Boron-based fuel-rich propellant: Properties, combustion, and technology aspects. Boron-Based Fuel-Rich. Propellant. doi: 10.1201/9780429030680.
  • Qian, Y., Y. Qiu, Y. Zhang, and X. Lu. 2017. Effects of different aromatics blended with diesel on combustion and emission characteristics with a common rail diesel engine. Appl. Therm. Eng. 125:1530–38. doi: 10.1016/J.APPLTHERMALENG.2017.07.145.
  • Rao, D. C. K., S. Syam, S. Karmakar, and R. Joarder. 2017a. Experimental investigations on nucleation, bubble growth, and micro-explosion characteristics during the combustion of ethanol/Jet A-1 fuel droplets. Exp. Therm. Fluid Sci. 89: 284–294. doi: 10.1016/j.expthermflusci.2017.08.025.
  • Rao, D. C. K., S. Karmakar, and S. Basu. 2017b. Atomization characteristics and instabilities in the combustion of multi-component fuel droplets with high volatility differential. Sci. Rep. 7 (1):1–15. doi: 10.1038/s41598-017-09663-7.
  • Rao, D. C. K., S. Karmakar, and S. K. Som. 2017c. Puffing and micro-explosion behavior in combustion of Butanol/Jet A-1 and Acetone-Butanol-Ethanol (A-B-E)/Jet A-1 Fuel Droplets. Combust. Sci. Technol. 189 (10):1796–812. doi: 10.1080/00102202.2017.1333502.
  • Richter, H., and J. B. Howard. 2000. Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Prog. Energy Combust. Sci. 26 (4–6):565–608. doi: 10.1016/S0360-1285(00)00009-5.
  • Sarathy, S. M., P. Oßwald, N. Hansen, and K. Kohse-Höinghaus. 2014. Alcohol combustion chemistry. Prog. Energy Combust. Sci. 44:40–102. doi: 10.1016/J.PECS.2014.04.003.
  • Saxena, V., N. Kumar, and V. K. Saxena. 2017. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled C.I. engine. Renewable Sustainable Energy Rev. 70:563–88. doi: 10.1016/J.RSER.2016.11.067.
  • Shang, W., S. Yang, T. Xuan, Z. He, and J. Cao. 2020. Experimental studies on combustion and microexplosion characteristics of N-Alkane droplets. Energy Fuels 34 (12):16613–23. doi: 10.1021/ACS.ENERGYFUELS.0C02904.
  • Sivakumar, M., N. Shanmuga Sundaram, R. Ramesh Kumar, and M. H. Syed Thasthagir. 2018. Effect of aluminium oxide nanoparticles blended pongamia methyl ester on performance, combustion and emission characteristics of diesel engine. Renew. Energy 116:518–26. doi: 10.1016/J.RENENE.2017.10.002.
  • Waqas, M. U., J. B. Masurier, M. Sarathy, and B. Johansson. 2018. Blending octane number of toluene with gasoline-like and PRF Fuels in HCCI combustion mode. SAE Technical Papers 2018-April. doi: 10.4271/2018-01-1246.
  • Westbrook, C. K., W. J. Pitz, O. Herbinet, H. J. Curran, and E. J. Silke. 2009. A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane. Combust. Flame 156 (1):181–99. doi: 10.1016/J.COMBUSTFLAME.2008.07.014.
  • Yontar, A. A., A. G. Özgüner, M. A. Adıgüzel, and D. Üstün. 2022. Combustion characteristics of trimethyl borate, diesel, and trimethyl borate-diesel blend droplets. J. Energy Inst. 105:221–31. doi: 10.1016/J.JOEI.2022.09.006.
  • Young, G., K. Sullivan, M. R. Zachariah, and K. Yu. 2009. Combustion characteristics of boron nanoparticles. Combust. Flame 156 (2):322–33. doi: 10.1016/j.combustflame.2008.10.007.
  • Zhang, Y., R. Huang, S. Huang, P. Zhou, X. Rao, G. Zhang, and L. Qiu. 2021. Experimental study on puffing, auto-ignition and combustion characteristics of an n-pentanol-diesel droplet. Energy 223:119994. doi: 10.1016/J.ENERGY.2021.119994.
  • Zhou, W., R. A. Yetter, F. L. Dryer, H. Rabitz, R. C. Brown, and C. E. Kolb. 1999. Multi-phase model for ignition and combustion of boron particles. Combust. Flame 117 (1–2):227–43. doi: 10.1016/S0010-2180(98)00079-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.