0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development and Optimization of a Nanocomposite Gel Foam for Inhibiting Coal Spontaneous Combustion

, , , , , , , , , & show all
Received 07 May 2024, Accepted 01 Jul 2024, Published online: 14 Jul 2024

References

  • Colaizzi, G. J. 2003. Prevention, control and/or extinguishment of coal seam fires using cellular grout. Int. J. Coal Geol. 59 (1–2):75–81. doi: 10.1016/j.coal.2003.11.004.
  • Dou, G. L., D. M. Wang, X. X. Zhong, and B. T. Qin. 2014. Effectiveness of catechin and poly (ethylene glycol) at inhibiting the spontaneous combustion of coal. Fuel. Process. Technol. 120:123–27. doi: 10.1016/j.fuproc.2013.12.016.
  • Dudley, M., S. Caroline, and A. Frank. 2019. Morwell coal mine fire as a cascading disaster: A case study. Prehosp. Disaster. Med. 34 (s1):s8. doi: 10.1017/S1049023X19000360.
  • Fan, S. X., H. Wen, D. Zhang, and Z. J. Yu. 2019. Experimental research on the performance of the macromolecule colloid fire-extinguishing material for coal seam spontaneous combustion. Adv. Mater. Sci. Eng. 2019:1–10. doi: 10.1155/2019/6940985.
  • Genc, B., M. Onifade, and A. P. Cook. 2018. Spontaneous combustion risk on South African coalfields: Part 2. Proceedings of the 21st international coal congress of Turkey ‘ICCET’, 13–25. Zonguldak, Turkey. https://www.researchgate.net/publication/325922477_Spontaneous_combustion_risk_on_South_African_coalfields_Part_2.
  • Gramza, A., J. Korczak, and R. Amarowicz. 2005. Tea polyphenols-their antioxidant properties and biological activity-a review. Pol. J. Food. Nutr. Sci. 14 (3):219.
  • Hernandez, Y., V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. de, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, et al. 2008. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3 (9):563–68. doi:10.1038/nnano.2008.215.
  • Khan, H., A. S. Yerramilli, A. D’Oliveira, T. L. Alford, D. C. Boffito, and G. S. Patience. 2020. Experimental methods in chemical engineering: X-ray diffraction spectroscopy-XRD. Can. J. Chem. Eng. 98 (6):1255–66. doi:10.1002/cjce.23747.
  • Li, Q. W., Y. Xiao, K. Q. Zhong, C. M. Shu, H. F. Lü, J. Deng, and S. Wu. 2020. Overview of commonly used materials for coal spontaneous combustion prevention. Fuel 275:117981. doi:10.1016/j.fuel.2020.117981.
  • Li, S. L., G. Zhou, Y. Y. Wang, B. Jing, and Y. L. Qu. 2019. Synthesis and characteristics of fire extinguishing gel with high water absorption for coal mines. Process. Saf. Environ. 125:207–18. doi:10.1016/j.psep.2019.03.022.
  • Liodakis, S., D. Bakirtzis, E. Lois, and D. Gakis. 2002. The effect of (NH4)2HPO4 and (NH4)2SO4 on the spontaneous ignition properties of Pinus halepensis pine needles. Fire. Saf. J. 37 (5):481–94. doi:10.1016/S0379-7112(02)00008-5.
  • Lotya, M., Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. de, Z. Wang, I. T. McGovern, et al. 2009. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131 (10):3611–20. doi:10.1021/ja807449u.
  • Lu, Y., S. L. Shi, H. Q. Wang, Z. J. Tian, Q. Ye, and H. Y. Niu. 2019. Thermal characteristics of cement microparticle-stabilized aqueous foam for sealing high-temperature mining fractures. Int. J. Heat. Mass. Tran. 131:594–603. doi:10.1016/j.ijheatmasstransfer.2018.11.079.
  • Ma, L., X. L. Fan, G. M. Wei, Y. J. Sheng, S. M. Liu, and Liu XX. 2023. Preparation and characterization of antioxidant gel foam for preventing coal spontaneous combustion. Fuel 338:127270. doi:10.1016/j.fuel.2022.127270.
  • Mahmoud, D. S., M. L. Tawfic, A. G. Rabie, and S. H. EI-Sabbagh. 2021. Superabsorbent polymer: Application in natural rubber for making rubber roofing sheets. Pigm. Resin. Technol. 50 (3):219–30. doi:10.1108/PRT-06-2020-0064.
  • Niu, H. Y., X. L. Deng, S. L. Li, K. X. Cai, H. Zhu, F. Li, and J. Deng. 2016. Experiment study of optimization on prediction index gases of coal spontaneous combustion. J. Cent. South. Univ. 23 (9):2321–28. doi:10.1007/s11771-016-3290-y.
  • Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, S. V. Dubonos, Dubonos IV, S. V. Grigorieva, I. V. Grigorieva, and A. A. Firsov. 2004. Electric field effect in atomically thin carbon films. Science 306 (5696):666–69. doi:10.1126/science.1102896.
  • O’Keefe, J. M. K., E. R. Neace, M. L. Hammond III, J. C. Hower, M. A. Engle, J. East, N. J. Geboy, R. A. Olea, K. R. Henke, G. C. Copley, et al. 2018. Gas emissions, tars, and secondary minerals at the Ruth Mullins and Tiptop coal mine fires. Int. J. Coal Geol. 195:304–16. doi:10.1016/j.coal.2018.06.012.
  • Onifade, M., B. Genc, and S. Bada. 2020. Spontaneous combustion liability between coal seams: A thermogravimetric study. Int. J. Min. Sci. Technol. 30 (5):691–98. doi:10.1016/j.ijmst.2020.03.006.
  • Onifade, M., B. Genc, A. R. Gbadamosi, A. Morgan, and T. Ngoepe. 2021. Influence of antioxidants on spontaneous combustion and coal properties. Process. Saf. Environ. Prot. 148:1019–32. doi:10.1016/j.psep.2021.02.017.
  • Pei, S., and H. M. Cheng. 2012. The reduction of graphene oxide. Carbon 50 (9):3210–28. doi:10.1016/j.carbon.2011.11.010.
  • Qi, X. Y., C. X. Wei, Q. Z. Li, and L. B. Zhang. 2016. Controlled-release inhibitor for preventing the spontaneous combustion of coal. Nat. Hazards. 82 (2):891–901. doi:10.1007/s11069-016-2224-1.
  • Qiao, W. G. 2021. Analysis and measurement of multifactor risk in underground coal mine accidents based on coupling theory. Reliab. Eng. Syst. Safe. 208:107433. doi:10.1016/j.ress.2021.107433.
  • Schatzel, S. J., R. B. Krog, A. Mazzella, C. Hollerich, and E. Rubinstein. 2016. A study of leakage rates through mine seals in underground coal mines. Int. J. Min. Reclam. Env. 30 (2):165–79. doi:10.1080/17480930.2015.1026665.
  • Seabra, A. B., A. J. Paula, R. de Lima, O. L. Alves, and N. Durán. 2014. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 27 (2):159–68. doi:10.1021/tx400385x.
  • Shao, Z. L., A. Revil, D. Q. Mao, and D. M. Wang. 2017. Induced polarization signature of coal seam fires. Geophys. J. Int. 208 (3):1313–31. doi:10.1093/gji/ggw452.
  • Shi, Q. L., and B. T. Qin. 2021. Film-forming property and oxygen barrier characteristic of gel-stabilized foam used for controlling spontaneous combustion of coal. Energy Fuels 35 (15):12083–90. doi:10.1021/acs.energyfuels.1c01702.
  • Singh, A. K., R. V. K. Singh, M. P. Singh, H. Chandra, and N. K. Shukla. 2007. Mine fire gas indices and their application to Indian underground coal mine fires. Int. J. Coal Geol. 69 (3):192–204. doi:10.1016/j.coal.2006.04.004.
  • Singh, R. V. K. 2013. Spontaneous heating and fire in coal mines. Prodedia. Eng. 62:78–90. doi:10.1016/j.proeng.2013.08.046.
  • Teo, L. S., C. Y. Chen, and J. F. Kuo. 1997. Fourier transform infrared spectroscopy study on effects of temperature on hydrogen bonding in amine-containing polyurethanes and poly (urethane− urea) s. Macromolecules 30 (6):1793–99. doi:10.1021/ma961035f.
  • Thirumal, M., D. Khastgir, N. K. Singha, B. S. Manjunath, and Y. P. Naik. 2009. Effect of a nanoclay on the mechanical, thermal and flame retardant properties of rigid polyurethane foam. J. Macromol. Sci. A 46 (7):704–12. doi:10.1080/10601320902939101.
  • Wang, G. Q., G. Q. Shi, Y. M. Wang, and H. Y. Shen. 2021. Numerical study on the evolution of methane explosion regions in the process of coal mine fire zone sealing. Fuel 289:119744. doi:10.1016/j.fuel.2020.119744.
  • Wu, Z. Y., S. S. Hu, S. G. Jiang, X. J. He, H. Shao, K. Wang, D. Fan, and W. Li. 2018. Experimental study on prevention and control of coal spontaneous combustion with heat control inhibitor. J. Loss. Prevent Proc. 56:272–77. doi:10.1016/j.jlp.2018.09.012.
  • Zhang, Y. T., Y. R. Liu, X. Q. Shi, C. P. Yang, W. F. Wang, and Y. Q. Li. 2018. Risk evaluation of coal spontaneous combustion on the basis of auto-ignition temperature. Fuel 233:68–76. doi:10.1016/j.fuel.2018.06.052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.