0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Measurement of the temperature of burning aluminum particles using multi-spectral pyrometry

, ORCID Icon, &
Received 20 Oct 2023, Accepted 05 Apr 2024, Published online: 18 Jul 2024

References

  • Bar-Ziv, E., and A. F. Sarofim. 1991. The electrodynamic chamber: A tool for studying high temperature kinetics involving liquid and solid particles. Prog. Energy. Combust. Sci. 17 (1):1–65. doi:10.1016/0360-1285(91)90002-5.
  • Braconnier, A. 2020. Etude expérimentale de la combustion d’une particule d’aluminium isolée : influence de la pression et de la composition de l’atmosphère oxydante. Ph.D. thesis, Orléans University.
  • Bucher, P., R. A. Yetter, F. L. Dryer, T. P. Parr, and D. M. Hanson-Parr. 1998. PLIF species and ratiometric temperature measurements of aluminum particle combustion in O2, CO2 and N2O oxidizers, and comparison with model calculations. Symp. (Int.) Combust. 27 (2):2421–29. doi:10.1016/S0082-0784(98)80094-5.
  • Chang, P., Mogi, T., and Dobashi, R. (2021). An investigation on the dust explosion of micron and nano scale aluminium particles. Journal of Loss Prevention in the Process Industries 70:104437. doi: 10.1016/j.jlp.2021.104437.
  • Cooper, M. A., M. J. Kaneshige, R. Pahl, S. Snedigar, and A. Renlund. 2006. Methods for evaluating aluminized RDX explosives. Proceeding of the 13th international detonation symposium, Norfolk, VA.
  • Dabos, M., K.-H. Tran, N. Lecysyn, G. Baudin, M. Genetier, I. Ranc, B. Serio, and A. Osmont. 2019. Investigation of alumina’s emission in the deflagration of gas-aluminum particles mixtures. Europyro Tours, France: Af3P (Association Française des Poudres, Propulsion et Pyrotechnie).
  • Davis, E. J., M. F. Buehler, and T. L. Ward. 1990. The double‐ring electrodynamic balance for microparticle characterization. Rev. Sci. Instruments 61 (4):1281–88. doi:10.1063/1.1141227.
  • Dreizin, E. L. (1996). Experimental study of stages in aluminium particle combustion in air. Combustion and Flame 105(4):541–556. doi: 10.1016/0010-2180(95)00224-3.
  • Dreizin, E. L. (1999). Experimental study of aluminum particle flame evolution in normal and micro-gravity. Combustion and Flame 116(3):323–333. doi: 10.1016/S0010-2180(97)00331-3.
  • Fedina, K. 2017. Post-detonation afterburning of high explosives. Ph.D. thesis, Lund University.
  • Frost, D., and F. Zhang. 2006. The nature of heterogeneous blast explosives. Proceedings of the 19th International Symposium on Military Aspects of Blast and Shock, Calgary, Canada, 1–6.
  • Hartung, W. H., and C. T. Avedisian. 1992. On the electrodynamic balance. Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci. 437:237–66.
  • Legrand, B. 2000. Etude de la combustion de particules d’aluminium et de magnésium: influence de la composition du mélange gazeux et de la pression. Ph.D. thesis, Orléans University.
  • Levendis, Y. A., K. R. Estrada, and H. C. Hottel. 1992. Development of multicolor pyrometers to monitor the transient response of burning carbonaceous particles. Rev. Sci. Instruments 63 (7):3608–22. doi:10.1063/1.1143586.
  • Marion, M. 1996. Etude sur la Combustion des particules d’aluminium sous pression. Ph.D. thesis, Orléans University.
  • Mcbride, B. J. 2002. NASA Glenn coefficients for calculating thermodynamic properties of individual species. Cleveland, Ohio, USA: National Aeronautics and Space Administration, John H. Glenn. Research Center.
  • Millogo, M., Bernard, S., and Gillard, P. (2020). Combustion characteristics of pure aluminum and aluminum alloys powders. Journal of Loss Prevention in the Process Industries 68:104270. doi: 10.1016/j.jlp.2020.104270.
  • Monier, R., F. Thumerel, J. Chapuis, F. Soulié, and C. Bordreuil. 2017. Liquid metals surface temperature fields measurements with a two-colour pyrometer. Measurement 101:72–80. doi:10.1016/j.measurement.2016.12.031.
  • Oran, E. S. 2015. Understanding explosions – from catastrophic accidents to creation of the universe. Proc. Combust. Inst. 35 (1):1–35. doi:10.1016/j.proci.2014.08.019.
  • Osmont, A., M. Genetier, and G. Baudin. 2018. Ability of thermochemical calculation to treat organic peroxides. AIP Conf. Proc. 1979:150030.
  • Panagiotou, T., Y. Levendis, and M. Delichatsios. 1996. Measurements of particle flame temperatures using three-color optical pyrometry. Combust. Flame 104 (3):272–87. doi:10.1016/0010-2180(95)00119-0.
  • Rosenwaks, S., R. E. Steele, and H. P. Broida. 1975. Chemiluminescence of AlO. The J. Chem. Phys. 63 (5):1963–65. doi:10.1063/1.431530.
  • Suarez, J. 2020. Modélisation de la combustion diphasique de l’aluminium et application sur la post-combustion d’une charge explosive condensée dans l’air. Ph.D. thesis, Toulouse University.
  • Sundaram, D. S., V. Yang, and V. E. Zarko. 2015. Combustion of nano aluminum particles (Review). Combust. Explos. Shock Waves 51 (2):173–96. doi:10.1134/S0010508215020045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.