0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Emission Spectra of Ammonia Laminar Flames in Spherically Propagating Flames and a Modified McKenna Burner

, , , , , , & show all
Received 25 Oct 2023, Accepted 05 Apr 2024, Published online: 21 Jul 2024

References

  • Alnasif, A., S. Mashruk, M. Kovaleva, P. Wang, and A. Valera-Medina. 2022. Experimental and numerical analyses of nitrogen oxides formation in a high ammonia-low hydrogen blend using a tangential swirl burner. Carbon. Neutrality. 1 (1):24. doi: 10.1007/s43979-022-00021-9.
  • Chen, Z. 2011. On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames. Combust. Flame. 158 (2):291–300. doi: 10.1016/j.combustflame.2010.09.001.
  • Green ammonia | Royal Society. Accessed October 19, 2023. 2020. https://royalsociety.org/topics-policy/projects/low-carbon-energy-programme/green-ammonia.
  • Hayakawa, A., T. Goto, R. Mimoto, T. Kudo, and H. Kobayashi. 2015. NO formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures. Mech. Eng. J. 2:14–00402–14–00402. doi: 10.1299/mej.14-00402.
  • Imhoff, T. B., S. Gkantonas, and E. Mastorakos. 2021. Analysing the performance of ammonia powertrains in the marine environment. Energies. 14 (21):7447. doi: 10.3390/en14217447.
  • Jiang, Y., A. Gruber, K. Seshadri, and F. Williams. 2020. An updated short chemical-kinetic nitrogen mechanism for carbon-free combustion applications. Int. J. Energy. Res. 44 (2):795–810. doi: 10.1002/er.4891.
  • Karan, A., C. M. Grégoire, O. Mathieu, E. L. Petersen, G. Dayma, C. Chauveau, and F. Halter. 2023. Experimental and detailed kinetics modelling study of NH2* chemiluminescence during ammonia combustion. Presented at the 13th United States National Combustion Meeting; College Station, Texas, United States.
  • Keesee, C. L., B. Guo, and E. L. Petersen. 2019. Laminar flame speed experiments of alternative liquid fuels. J. Eng. Gas Turbines Power 142. 142 (1). doi: 10.1115/1.4045346.
  • Keesee, C. L., B. Guo, and E. L. Petersen. 2021a. Laminar flame speed measurements of kerosene-based fuels accounting for uncertainties in mixture average molecular weight. J. Eng. Gas. Turbines. Power. 143. 143 (4). doi: 10.1115/1.4049886.
  • Keesee, C. L., B. Guo, and E. L. Petersen. 2021b. Proper interpretation and overall accuracy of laminar flame speed measurements of single- and multi-component liquid fuels. Proc. Combust. Inst. 38 (2):2225–34. doi: 10.1016/j.proci.2020.06.361.
  • Kenner, R. D., and E. A. Ogryzlo. 1984. Orange chemiluminescence from NO2. J. Chem. Phys. 80 (1):1–6. doi: 10.1063/1.446479.
  • Kobayashi, H., A. Hayakawa, K. D. K. A. Somarathne, and E. C. Okafor. 2019. Science and technology of ammonia combustion. Proc. Combust. Inst. 37 (1):109–33. doi: 10.1016/j.proci.2018.09.029.
  • Krejci, M. C., C. L. Keesee, A. J. Vissotski, S. Ravi, and E. L. Petersen. 2019. Effect of steam dilution on laminar flame speeds of syngas fuel blends at elevated pressures and temperatures. Presented at the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, American Society of Mechanical Engineers Digital Collection. doi: 10.1115/GT2019-90570.
  • Krejci, M. C., O. Mathieu, A. J. Vissotski, S. Ravi, T. G. Sikes, E. L. Petersen, A. Kérmonès, W. Metcalfe, and H. J. Curran. 2013. Laminar flame speed and ignition delay time data for the kinetic modeling of hydrogen and syngas fuel blends. J. Eng. Gas Turbines Power 135. 135 (2). doi: 10.1115/1.4007737.
  • Mashruk, S., X. Zhu, W. L. Roberts, T. F. Guiberti, and A. Valera-Medina. 2022. Chemiluminescent footprint of premixed ammonia-methane-air swirling flames. Proc. Combust. Inst. 39 (1):1415–23. doi: 10.1016/j.proci.2022.08.073.
  • Mei, B., X. Zhang, S. Ma, M. Cui, H. Guo, Z. Cao, and Y. Li. 2019. Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions. Combust. Flame. 210:236–46. doi: 10.1016/j.combustflame.2019.08.033.
  • Okafor, E. C., Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, and H. Kobayashi. 2018. Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames. Combust. Flame. 187:185–98. doi: 10.1016/j.combustflame.2017.09.002.
  • Otomo, J., M. Koshi, T. Mitsumori, H. Iwasaki, and K. Yamada. 2018. Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion. Int. J. Hydrog. Energy. 43 (5):3004–14. doi: 10.1016/j.ijhydene.2017.12.066.
  • Shrestha, K. P., C. Lhuillier, A. A. Barbosa, P. Brequigny, F. Contino, C. Mounaïm-Rousselle, L. Seidel, and F. Mauss. 2021. An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature. Proc. Combust. Inst. 38 (2):2163–74. doi: 10.1016/j.proci.2020.06.197.
  • Sikes, T., M. S. Mannan, and E. L. Petersen. 2018. An experimental study: Laminar flame speed sensitivity from spherical flames in stoichiometric CH4–air mixtures. Combust. Sci. Technol. 190 (9):1594–613. doi: 10.1080/00102202.2018.1460365.
  • Sikes, T., O. Mathieu, W. D. Kulatilaka, M. S. Mannan, and E. L. Petersen. 2019. Laminar flame speeds of DEMP, DMMP, and TEP added to H2- and CH4-air mixtures. Proc. Combust. Inst. 37 (3):3775–81. doi: 10.1016/j.proci.2018.05.042.
  • Turner, M. A. 2023. Spherical flame front thickness and instability [ Doctoral dissertation]. Texas A&M University.
  • Turner, M. A., P. Parajuli, W. D. Kulatilaka, and E. L. Petersen. 2022. Emission spectra of hydrocarbon flames doped with phosphorus-containing compounds, in: AIAA SCITECH 2022 forum. American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2022-0638.
  • Verkamp, F. J., M. C. Hardin, and J. R. Williams. 1967. Ammonia combustion properties and performance in gas-turbine burners. Symp. Int. Combust. 11 (1):985–92. doi: 10.1016/S0082-0784(67)80225-X.
  • Wang, Y., S. Taghizadeh, A. S. Karichedu, W. D. Kulatilaka, and D. Jarrahbashi. 2020. Piloted liquid spray flames: a numerical and experimental study. Combust. Sci. Technol. 192 (10):1887–909. doi: 10.1080/00102202.2019.1629431.
  • Wang, Z., X. Han, Y. He, R. Zhu, Y. Zhu, Z. Zhou, and K. Cen. 2021. Experimental and kinetic study on the laminar burning velocities of NH3 mixing with CH3OH and C2H5OH in premixed flames. Combust. Flame. 229:111392. doi: 10.1016/j.combustflame.2021.02.038.
  • Wiseman, S., M. Rieth, A. Gruber, J. R. Dawson, and J. H. Chen. 2021. A comparison of the blow-out behavior of turbulent premixed ammonia/hydrogen/nitrogen-air and methane–air flames. Proc. Combust. Inst. 38 (2):2869–76. doi: 10.1016/j.proci.2020.07.011.
  • Zheng, S., Y. He, B. Hu, J. Zhu, B. Zhou, and Q. Lu. 2022. Effects of radiation reabsorption on the flame speed and NO emission of NH3/H2/air flames at various hydrogen ratios. Fuel. 327:125176. doi: 10.1016/j.fuel.2022.125176.
  • Zheng, S., H. Liu, R. Sui, B. Zhou, and Q. Lu. 2022. Effects of radiation reabsorption on laminar NH3/H2/air flames. Combust. Flame. 235:111699. doi: 10.1016/j.combustflame.2021.111699.
  • Zheng, S., H. Liu, Y. Wang, X. Chen, R. Sui, and Q. Lu. 2023. On the roles of humidification and radiation during the ignition of ammonia–hydrogen–air mixtures. Combust. Flame. 254:112832. doi: 10.1016/j.combustflame.2023.112832.
  • Zhu, X., A. A. Khateeb, W. L. Roberts, and T. F. Guiberti. 2021. Chemiluminescence signature of premixed ammonia-methane-air flames. Combust. Flame. 231:111508. doi: 10.1016/j.combustflame.2021.111508.
  • Zhu, X., W. L. Roberts, and T. F. Guiberti. 2022. UV-visible chemiluminescence signature of laminar ammonia-hydrogen-air flames. Proc. Combust. Inst 39 (4):4227–35. doi: 10.1016/j.proci.2022.07.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.