0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modeling of Micro Aluminum Particle Flames Using Particle Burning Time

, , &
Received 14 Oct 2023, Accepted 08 Mar 2024, Published online: 29 Jul 2024

References

  • 14034-1. n.d. Determination of explosion characteristics of dust clouds - part 1: Determination of the maximum explosion pressure pmax of dust clouds.
  • Alderliesten, M. 2010. Mean particle diameters. Part VI: Fundamental distinction between statistics based (ISO/DIN) and physics based (moment-ratio)definition systems. Part. Part. Syst. Charact. 27 (1–2):7–20. doi:10.1002/ppsc.201000002.
  • Alderliesten, M. 2013. Mean particle diameters. Part VII. The rosin-rammler size distribution: Physical and mathematical properties and relationships to moment-ratio defined mean particle diameters. Part. Part. Syst. Charact. 30 (3):244–57. doi:10.1002/ppsc.201200021.
  • Aslanov, S. K., V. G. Shevchuk, Y. N. Kostyshin, L. V. Boichuk, and S. V. Goroshin. 1993. Oscillatory combustion of air suspensions. Combust. Explos. Shock Waves. 29 (2):163–69. doi:10.1007/BF00755874.
  • Badiola, C., R. J. Gill, and E. L. Dreizin. 2011. Combustion characteristics of micron-sized aluminum particles in oxygenated environments. Combust. Flame. 158 (10):2064–70. doi:10.1016/j.combustflame.2011.03.007.
  • Bazyn, T., H. Krier, and N. Glumac. 2007. Evidence for the transition from the diffusion-limit in aluminum particle combustion. Proc. Combust. Inst. 31 (2):2021–28. doi:10.1016/j.proci.2006.07.161.
  • Beckstead, M. W. 2005. Correlating aluminum burning times. Combust. Explos. Shock Waves. 41 (5):533–46. doi:10.1007/s10573-005-0067-2.
  • Beckstead, M. W., Y. Liang, and K. V. Pudduppakkam. 2005. Numerical simulation of single aluminum particle combustion (review). Combust. Explos. Shock Waves. 41 (6):622–38. doi:10.1007/s10573-005-0077-0.
  • Bergthorson, J. M. 2018. Recyclable metal fuels for clean and compact zero-carbon power. Prog. Energy Combust. Sci. 68:169–96. doi:10.1016/j.pecs.2018.05.001.
  • Bergthorson, J. M., S. Goroshin, M. J. Soo, P. Julien, J. Palecka, D. L. Frost, and D. J. Jarvis. 2015. Direct combustion of recyclable metal fuels for zero-carbo heat and power. Appl. Energy 160:368–82. doi:10.1016/j.apenergy.2015.09.037.
  • Blais, F., P. Julien, J. Palecka, S. Goroshin, and J. M. Bergthorson. 2020. Effect of initial reactant temperature on flame speeds in aluminum dust suspensions. Combust. Sci. Technol. 194 (8):1513–26. doi:10.1080/00102202.2020.1820496.
  • Boichuk, L. V., V. G. Shevchuk, and A. I. Shvets. 2002. Flame propagation in two-component aluminum-boron gas suspensions. Combust. Explos. Shock Waves. 38 (6):651–54. doi:10.1023/A:1021136126730.
  • Braconnier, A., S. Gallier, F. Halter, and C. Chauveau. 2021. Aluminum combustion in CO2-CO-N2mixtures. Proc. Combust. Inst. 38 (3):4355–63. doi:10.1016/j.proci.2020.06.028.
  • Brooks, K. P., and M. W. Beckstead. 1995. Dynamics of aluminum combustion. J. Propul. Power. 11 (4):769–80. doi:10.2514/3.23902.
  • Brzustowski, T. A., and I. Glassman. 1964. Vapor-phase diffusion flames in the combustion of magnesium and aluminum: II. Experimental observations in oxygen atmospheres. Prog. Astronaut. Rocketry. 15:117–58.
  • Catoire, L., J.-F. Legendre, and M. Giraud. 2003. Kinetic model for aluminum-sensitized ram accelerator combustion introduction. J. Propul. Power. 19 (2):196–202. doi:10.2514/2.6118.
  • Cheng, L., N. Barleon, O. Vermorel, B. Cuenot, and A. Bourdon. 2022. AVIP: A low temperature plasma code. 1–40.
  • Dufaud, O., M. Traoré, L. Perrin, S. Chazelet, and D. Thomas. 2010. Experimental investigation and modelling of aluminum dusts explosions in the 20 L sphere. J. Loss Prev. Process Ind. 23 (2):226–36. doi:10.1016/j.jlp.2009.07.019.
  • Dufaud, O., A. Vignes, F. Henry, L. Perrin, and J. Bouillard. 2011. Ignition and explosion of nanopowders: Something new under the dust. J. Phys. Conf. Ser. 304 (1):012076. doi:10.1088/1742-6596/304/1/012076.
  • Gallier, S., F. Sibe, and O. Orlandi. 2011. Combustion response of an aluminum droplet burning in air. Proc. Combust. Inst. 33 (2):1949–56. doi:10.1016/j.proci.2010.05.046.
  • Glassman, I. 1959. Metal combustion processes. Technical report. Princeton University, Princeton, NJ.
  • Goroshin, S., I. Fomenko, and J. H. Lee. 1996. Burning velocities in fuel-rich aluminum dust clouds. Symp. Int. Combust. 26 (2):1961–67. doi:10.1016/S0082-0784(96)80019-1.
  • Goroshin, S., J. Lee, and Y. Shoshin. 1998. Effect of the discrete nature of heat sources on flame propagation in particulate suspensions. Symp. Int. Combust. 27 (1):743–49. doi:10.1016/S0082-0784(98)80468-2.
  • Goroshin, S., J. Palecka, and J. M. Bergthorson. 2022. Some fundamental aspects of laminar flames in nonvolatile solid fuel suspensions. Prog. Energy Combust. Sci. 91:100994. doi:10.1016/j.pecs.2022.100994.
  • Goroshin, S., F. D. Tang, and A. J. Higgins. 2011. Reaction-diffusion fronts in media with spatially discrete sources. Phys. Rev. E. 84 (2):3–6. doi:10.1103/PhysRevE.84.027301.
  • Han, D. H., and H. G. Sung 2019. A numerical study on heterogeneous aluminum dust combustion including particle surface and gas-phase reaction. Combust. Flame. 206:112–22. doi:10.1016/j.combustflame.2019.04.036.
  • Harrison, J., and M. Q. Brewster. 2009. Analysis of thermal radiation from burning aluminium in solid propellants. Combust. Theory Modell. 13 (3):389–411. doi:10.1080/13647830802684318.
  • Hermsen, R. W. 1981. Aluminum combustion efficiency in solid rocket motors. AIAA Paper.
  • Huang, Y., G. A. Risha, V. Yang, and R. A. Yetter. 2009. Effect of particle size on combustion of aluminum particle dust in air. Combust. Flame. 156 (1):5–13. doi:10.1016/j.combustflame.2008.07.018.
  • Julien, P., J. Vickery, S. Goroshin, D. L. Frost, and J. M. Bergthorson. 2015. Freely-propagating flames in aluminum dust clouds. Combust. Flame. 162 (11):4241–53. doi:10.1016/j.combustflame.2015.07.046.
  • Lacassagne, L. 2017. Simulations et analyses de stabilité linéaire du détachement tourbillonnaire d’angle dans les moteurs à propergol solide. PhD thesis, Institut National Polytechnique de Toulouse.
  • Law, C. K. 1973. A simplified theoretical model for the vapor-phase combustion of metal particlest. Combust. Sci. Technol. 7 (5):197–212. doi:10.1080/00102207308952359.
  • Liberman, M. A. 2021. Effects of radiation on particle-laden combustion, 465–96. Cham: Springer International Publishing.
  • Lomba, R., S. Bernard, F. Halter, C. Chauveau, C. Mounaïm-Rousselle, P. Gillard, T. Tahtouh, and O. Guézet. 2015. Experimental characterization of combus-tion regimes for micron-sized aluminum powders. 53rd AIAA Aerospace Sciences Meeting, 1–15.
  • Lomba, R., P. Laboureur, C. Dumand, C. Chauveau, and F. Halter. 2019. De termination of aluminum-air burning velocities using PIV and laser sheet tomography. Proc. Combust. Inst. 37 (3):3143–50. doi:10.1016/j.proci.2018.07.013.
  • Palečka, J., J. Sniatowsky, S. Goroshin, A. J. Higgins, and J. M. Bergthorson. 2019. A new kind of flame: Observation of the discrete flame propagation regime in iron particle suspensions in microgravity. Combust. Flame. 209:180–86. doi:10.1016/j.combustflame.2019.07.023.
  • Poinsot, T., and D. Veynante. 2005. Theoretical and numerical combustion.
  • Proust, C. 2006. A few fundamental aspects about ignition and flame propagation in dust clouds. J. Loss Prev. Process Ind. 19 (2–3):104–20. doi:10.1016/j.jlp.2005.06.035.
  • Ranz, W. E., and W. R. Marshall. 1952. Evaporation from drops. Chem. Eng. Prog. 48 (3):141–6.
  • Risha, G. A., Y. Huang, R. A. Yetter, and V. Yang. 2005. Experimental investigation of aluminum particle dust cloud combustion. 43rd AIAA Aerospace Sciences Meeting and Exhibit - Meeting Papers, 10–13 January 2005, Reno, Nevada, 2005–739.
  • Sabnis, J. S., F. J. De Jong, and H. J. Gibeling. 1992. A two-phase restricted equilibrium model for combustion of metalized solid propellants. AIAA/ASME/SAE/ASEE 28th Joint Propulsion Conference and Exhibit, 1992, 06–08 July 1992, Nashville, TN, U.S.A., 0–11.
  • Sanjose, M. 2021. Évaluation de la méthode Euler-Euler pour la simulation aux grandes échelles des chambres à carburant liquide. PhD thesis, Institut National Polytechnique de Toulouse.
  • Sibra, A. 2015. Modélisation et étude de l’évaporation et de la combustion de gouttes dans les moteurs à propergol solide par une approche eulérienne Multi-Fluide. PhD thesis, Université Paris-Saclay.
  • Sierra Sanchez, P. 2021. Modeling the dispersion and evaporation of sprays in aeronautical combustion chambers. PhD thesis, Institut National Polytechnique de Toulouse.
  • Suarez, J. 2020. Modelisation de la combustion diphasique de l’aluminium et application sur la post-combustion d’une charge d’explosif condensé dans l’air. PhD thesis, Institut national polytechnique de Toulouse.
  • Tang, F. D., A. J. Higgins, and S. Goroshin. 2009. Effect of discreteness on heterogeneous flames: Propagation limits in regular and random particle arrays. Combust. Theory Modell. 13 (2):319–41. doi:10.1080/13647830802632184.
  • Traoré, M. 2007. Explosions de poussiéres et de mélanges hybrides. Etudes paramétrique et relation entre la cinétique de combustion et la violence de l’explosion. PhD thesis, Institut National Polytechnique de Lorraine.
  • Vignes, A. 2008. Evaluation de l’inflammabilité et de l’explosivité des nanopoudres : uen démarche essentielle pour la maîtrise des risques. PhD thesis, Institut National Polytechnique de Lorraine.
  • Wang, J., N. Wang, X. Zou, W. Yu, and B. Shi. 2021. Modeling of micro aluminum particle combustion in multiple oxidizers. Acta Astronautica. 189 (July):119–28. doi:10.1016/j.actaastro.2021.08.047.
  • Washburn, E. B., J. N. Trivedi, L. Catoire, and M. W. Beckstead. 2008. The simulation of the combustion of micrometer-sized aluminum particles with steam. Combust. Sci. Technol. 180 (8):1502–17. doi:10.1080/00102200802125594.
  • Wu, Y., G. Zhang, J. Yao, Y. He, and M. Wang. 2023. Numerical study on flame propagation of nano- and micron-sized aluminum dust combustion in air. Powder. Technol. 430:118977. doi:10.1016/j.powtec.2023.118977.
  • Zou, X., N. Wang, L. Han, R. Xue, C. Xu, W. Zhuang, and B. Shi. 2023. Investigation on burning behaviors of aluminum agglomerates in solid rocket motor with detailed combustion model. Acta Astronautica. 206:243–56. doi:10.1016/j.actaastro.2023.02.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.