0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pressure-Angle Polars Obtaining Flow Field of Rotating Detonation

, ORCID Icon &
Received 28 Sep 2023, Accepted 27 Dec 2023, Published online: 15 Jul 2024

References

  • Anand, V., A. S. George, R. Driscoll, and E. Gutmark. 2016. Longitudinal pulsed detonation instability in a rotating detonation combustor. Exp. Therm. Fluid Sci. 77:212–25. doi: 10.1016/j.expthermflusci.2016.04.025.
  • Ayers, Z. M., A. Lemcherfi, E. W. Plaeh, R. M. Gejji, H. D. Perkins, S. Roy, C. D. Slabaugh, T. R. Meyer, and C. A. Fugger. 2022. Simultaneous 100-kHz acetone planar laser-induced fluorescence and OH* chemiluminescence in a linear non-premixed detonation channel. Combust. Flame. 244:112209. doi: 10.1016/j.combustflame.2022.112209.
  • Bach, E., C. O. Paschereit, P. Stathopulos, and M. Bohon. 2020. RDC operation and performance with varying air injector pressure loss. AIAA Scitech 2020, Orlando, FL: Forum. doi: 10.2514/6.2020-0199.
  • Bach, E., C. O. Paschereit, P. Stathopulos, and M. Bohon. 2021. Rotating detonation wave direction and the influence of nozzle guide vane inclination. Aiaa. J. 59 (12):5276–87. doi: 10.2514/1.J060594.
  • Batchelor, G. K. 2000. An introduction to fluid dynamics. London: Cambridge University Press.
  • Baurle, R. A., G. A. Aleopoulos, and H. A. Hassan. 1994. Assumed joint probability density function approach for supersonic turbulent combustion. J. Propuls. Power. 10 (4):473–84. doi: 10.2514/3.23797.
  • Bellenoue, M., B. Boust, P. Vidal, R. Zitoun, T. Gaillard, D. Davidenko, M. Leyko, and B. L. Naour. 2016. New combustion concepts to enhance the thermodynamic efficiency of propulsion engines. Aerosp. Lab. (11):13. doi: 10.12762/2016.AL11-12.
  • Bluemner, R., C. O. Paschereit, E. J. Gutmark, and M. Bohon. 2020. Investigation of longitudinal operating modes in rotating detonation combustors. AIAA SciTech 2020, Orlando, FL: Forum. doi: 10.2514/6.2020-2287.
  • Bykovskii, F. A., S. A. Zhdan, and E. F. Vedernikov. 2014. Initiation of detonation of fuel-air mixtures in a flow-type annular combustor. Combust. Explos. Shock Waves 50 (2):214–22. doi: 10.1134/S0010508214020130.
  • Bykovskii, F. A., S. A. Zhdan, and E. F. Vedernikov. 2016. Continuous spin detonation of a heterogeneous kerosene-air mixture with addition of hydrogen. Combust. Explos. Shock. Waves. 52 (3):371–73. doi: 10.1134/S0010508216030187.
  • Bykovskii, F. A., S. A. Zhdan, and E. F. Vedernikov. 2019. Continuous detonation of the liquid kerosene-air mixture with addition of hydrogen or syngas. Combust. Explos. Shock Waves 55 (5):589–98. doi: 10.1134/S0010508219050101.
  • Cheng, P., F. Song, S. Xu, J. Zhou, and Y. Wu. 2022. Experimental study on combustion efficiency and gas analysis of RDC with different blockage ratio. Combust. Sci. Technol. 195 (16):4166–85. doi: 10.1080/00102202.2022.2060039.
  • Ciccarelli, G., T. Ginsberg, and J. L. Boccio. 1997. Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility. Brookhave. Natl. Lab. doi: 10.2172/563843.
  • Courant, R., and K. O. Friedrichs. 1999. Supersonic flow and shock waves. Berlin: Springer Science & Business Media.
  • Dunn, I. B., V. Malik, W. Flores, A. Morales, and K. A. Ahmed. 2021. Experimental and theoretical analysis of carbon driven detonation waves in a heterogeneously premixed rotating detonation engine. Fuel 302:121128. doi: 10.1016/j.fuel.2021.121128.
  • Eto, S., N. Tsuboi, T. Kojima, and A. K. Hayashi. 2016. Three-dimensional numerical simulation of a rotating detonation engine: Effects of the throat of a converging-diverging nozzle on engine performance. Combust. Sci. Technol. 188 (11–12):2105–16. doi: 10.1080/00102202.2016.1213990.
  • Falempin, F., and B. L. Naour. 2009. R&T effort on pulsed and continuous detonation wave engines. 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, 7284, Bremen, Germany. doi: 10.2514/6.2009-7284.
  • Fievisohn, R. T., and K. H. Yu. 2017. Steady-state analysis of rotating detonation engine flowfields with the method of characteristics. J. Propuls. Power. 33 (1):89–99. doi: 10.2514/1.B36103.
  • Frolov, S. M., V. I. Zvegintsev, V. S. Ivanov, V. S. Aksenov, I. O. Shamshin, D. A. Vnuchkov, D. G. Nalivaichenko, A. A. Berlin, and V. M. Fomin. 2017. Wind tunnel tests of a hydrogen-fueled detonation ramjet model at approach air stream mach numbers from 4 to 8. Int. J. Hydrogen Energy 42 (40):25401–13. doi: 10.1016/j.ijhydene.2017.08.062.
  • Fujiwara, T., and S. Tsuge. 1972. Quasi one-dimensional analysis of gaseous free detonations. J. Phys. Soc. Jpn 33 (1):237–41. doi: 10.1143/JPSJ.33.237.
  • Goto, K., J. Nishimura, J. Higashi, H. Taki, T. Ukai, Y. Hayamizuet. 2018. Preliminary experiments on rotating detonation rocket engine for flight demonstration using sounding rocket. 2018 AIAA Aerospace Sciences Meeting, 0157, Kissimmee, FL. doi: 10.2514/6.2018-0157.
  • Huang, X., C. J. Teo, and B. C. Khoo. 2021. Experimental investigation on coexisting wave components in an optically accessible rotating detonation combustor. Aerosp. Sci. Technol. 111:106538. doi: 10.1016/j.ast.2021.106538.
  • Jourdaine, N., N. Tsuboi, K. Ozawa, T. Kojima, and A. K. Hayashi. 2019. Three-dimensional numerical thrust performance analysis of hydrogen fuel mixture rotating detonation engine with aerospike nozzle. P. Combust. Inst. 37 (3):3443–51. doi: 10.1016/j.proci.2018.09.024.
  • Kurita, N., N. H. Jourdaine, N. Tsuboi, K. Ozawa, K. A. Hayashi, and T. Kojima. 2020. Three-dimensional numerical simulation on hydrogen/air rotating detonation engine with aerospike nozzle: Effects of nozzle geometries. AIAA SciTech 2020, Orlando, FL: Forum. doi: 10.2514/6.2020-0688.
  • Lu, F. K., and E. M. Braun. 2014. Rotating detonation wave propulsion: Experimental challenges, modeling, and engine concepts. J. Propuls. Power. 30 (5):1125–42. doi: 10.2514/1.B34802.
  • Ma, Z. 2021. Experimental research on ignition, quenching, reinitiation in continuous detonation engines. PhD diss., Peking University. doi:10.26929/d.cnki.gbeju.2021.000003.
  • Meng, Q., N. Zhao, and H. Zhang. 2021. On the distributions of fuel droplets and in situ vapor in rotating detonation combustion with prevaporized n-heptane sprays. Phys. Fluids. 33 (4):043307. doi: 10.1063/5.0045222.
  • Nejaamtheen, M. N., J. M. Kim, and J. Y. Choi. 2018. Review on the research progresses in rotating detonation engine. Detonat. Control. Propuls. 109–59. doi: 10.1007/978-3-319-68906-76.
  • Peng, H., W. Liu, and S. Liu. 2019. Ethylene continuous rotating detonation in optically accessible racetrack-like combustor. Combust. Sci. Technol. 191 (4):676–95. doi: 10.1080/00102202.2018.1498850.
  • Rankin, B. A., J. R. Codoni, K. Y. Cho, J. Hoke, and F. R. Schauer. 2017. Mid-infrared imaging of an optically accessible non-premixed hydrogen-air rotating detonation engine. 55th AIAA Aerospace Sciences Meeting, 0370, Grapevine, TX. doi: 10.2514/6.2017-0370.
  • Schwer, D., and K. Kailasanath. 2011. Numerical investigation of the physics of rotating-detonation-engines. Proc. Combust. Inst. 33 (2):2195–202. doi: 10.1016/j.proci.2010.07.050.
  • Sheng, Z., M. Cheng, and J. Wang. 2023. Multi-wave effects on stability and performance in rotating detonation combustors. Phys. Fluids. 35 (7):076119. doi: 10.1063/5.0144199.
  • Sommers, W. P., and R. B. Morrison. 1962. Simulation of condensed-expensive detonation phenomena with gases. Phys. Fluids. 5 (2):241. doi: 10.1063/1.1706602.
  • Sousa, J., J. Brausn, and G. Paniagua. 2017. Development of a fast evaluation tool for rotating detonation combustors. Appl. Math. Model. 52:42–52. doi: 10.1016/j.apm.2017.07.019.
  • Takayuki, Y., A. K. Hayashi, and E. Yamada. 2010. Detonation limit thresholds in H2/O2 rotating detonation engine. Combust. Sci. Technol. 182 (11–12):1901–14. doi: 10.1080/00102202.2010.498676.
  • Teasley, T. W., T. M. Fedotowsky, P. R. Gradl, B. L. Austin, and S. D. Heister. 2023. Current state of NASA continuously rotating detonation cycle engine development. AIAA SCITECH 2023 Forum. National Harbor, MD & Online. doi: 10.2514/6.2023-1873.
  • Tsuboi, N., N. H. Jourdaine, T. Watanabe, A. K. Hayashi, and T. Kojima. 2018. Three-dimensional numerical simulation on hydrogen-oxygen rotating detonation engine with unchoked aerospike nozzle. 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, 1885. doi: 10.2514/6.2018-1885.
  • Voitsekhovskii, B. V. 1959. Statsionarnaya dyetonatsiya. Dokl. Akad. Nauk 129 (6):1254–56.
  • Wang, J. 1994. Two-dimensional unsteady flow and shock wave. Beijing: Science Press.
  • Westbrook, C. K., and F. L. Dryer. 1981. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol. 27 (1–2):31–43. doi: 10.1080/00102208108946970.
  • Wolanski, P., W. Balicki, W. Perkowski, and A. Bilar. 2021. Experimental research of liquid-fueled continuously rotating detonation chamber. Shock Waves 31 (7):807–12. doi: 10.1007/s00193-021-01014-w.
  • Wu, K., L. Zhang, M. Luan, and J. Wang. 2021. Effects of isothermal wall boundary conditions on rotating detonation engine. Combust. Sci. Technol. 193 (2):211–24. doi: 10.1080/00102202.2020.1847095.
  • Yan, C., J. Zhao, Y. Tong, B. Wang, C. Shu, W. Nie, and W. Lin. 2023. Formation and evolution of the numerical air-breathing rotating detonation fueled by C12H23. Combust. Sci. Technol. 1–34. doi: 10.1080/00102202.2023.2226816.
  • Yi, T., J. Lou, C. Turangan, J. Choi, and P. Wolanski. 2012. Propulsive performance of a continuously rotating detonation engine. J. Propul. Power. 27 (1):171–81. doi: 10.2514/1.46686.
  • Zhang, Y., Z. Sheng, G. Rong, D. Shen, K. Wu, and J. Wang. 2023. Experimental research on the performance of hollow and annular rotating detonation engines with nozzles. Appl. Therm. Eng. 218:119339. doi: 10.1016/j.applthermaleng.2022.119339.
  • Zhou, R., and J. Wang. 2012. Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines. Combust. Flame 159 (12):3632–45. doi: 10.1016/j.combustflame.2012.07.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.