1
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of Immersion Temperature on Reburning Characteristics of Coal with Different Preoxidation Degrees

& ORCID Icon
Received 16 May 2024, Accepted 23 Jul 2024, Published online: 05 Aug 2024

References

  • Bu, Y.-C., H.-Y. Niu, H.-Y. Wang, Q. Fu, and T. Qiu. 2023. Study on the re-ignition characteristics of high-temperature oxidization & water immersion long-flame coal at different heating rates. Energy Sources, Part A: Recovery, Utilization, Environ. Eff. 45 (3):7317–28. doi: 10.1080/15567036.2023.2221662.
  • Cao, N., G. Wang, Y. Liang, S. Hussain, and S. Hussain. 2021. Study on the microscopic mechanism of spontaneous combustion and oxidation kinetics of water-leached coal. J. Chem. 2021:1–15. doi: 10.1155/2021/5564290.
  • Chao, J., Q. Gu, R. Pan, X. Han, D. Hu, W. Liu, and S. Liu. 2022. Influence of a high-temperature environment in deep mining on the characteristics of coal spontaneous combustion. Combust. Sci. Technol. 196 (4):1–19. doi: 10.1080/00102202.2022.2093110.
  • Deng, J., P. Hu, Z.-J. Bai, C.-P. Wang, F.-R. Kang and L. Liu. 2022. Dynamic behaviours on oxidation heat release of key active groups for coal with different degrees of metamorphism. Fuel 320:320. doi: 10.1016/j.fuel.2022.123967.
  • Duan, Z., Y. Zhang, J. Deng, P. Shu, and L. Li. 2023. Effect of molecular structure change on the properties of persistent free radicals during coal oxidation. Fuel 350:350. doi: 10.1016/j.fuel.2023.128861.
  • Fan, J., G. Wang, and J. Zhang. 2019. Study on spontaneous combustion tendency of coals with different metamorphic grade at low moisture content based on TPO-DSC. Energies 12 (12):3890.
  • Guo, C., S. Jiang, H. Shao, Z. Wu, and M. Bascompta. 2023. Effect of secondary oxidation of pre-oxidized coal on early warning value for spontaneous combustion of coal. Appl. Sci. 13 (5):3154. doi: 10.3390/app13053154.
  • Han, Q., C. Cui, S. Jiang, C. Deng, and Z. Jin. 2022. Effect of water evaporation on the inhibition of spontaneous coal combustion. ACS Omega. 7 (8):6824–33. doi: 10.1021/acsomega.1c06418.
  • He, Y.-J., J. Deng, X.-W. Zhai, Z.-J. Bai, Y. Xiao, and C.-M. Shu. 2022. Experimental investigation of the macroscopic characteristic parameters and microstructure of water-soaked coal during low-temperature oxidation. J. Therm. Anal. Calorim. 147 (17):9711–23. doi: 10.1007/s10973-022-11243-5.
  • Huang, Z., X. Zhao, Y. Gao, Z. Shao, Y. Zhang, and X. Liu. 2020. The influence of water immersion on the physical and chemical structure of coal. Combust. Sci. Technol. 194 (6):1136–54. doi: 10.1080/00102202.2020.1804381.
  • Jia, H., Y. Yang, W. Ren, Z. Kang, and J. Shi. 2021. Experimental study on the characteristics of the spontaneous combustion of coal at high ground temperatures. Combust. Sci. Technol. 194 (14):2880–93. doi: 10.1080/00102202.2021.1895775.
  • Li, P., Y. Yang, J. Li, G. Miao, K. Zheng, and Y. Wang. 2021. Study on the oxidation thermal kinetics of the spontaneous combustion characteristics of water-immersed coal. Thermochim. Acta 699:699. doi: 10.1016/j.tca.2021.178914.
  • Liu, Q., L. Sun, Y. Zhang, Z. Liu, and J. Ma. 2023. Effects of water immersion and pre-oxidation on re-ignition characteristics of non-caking coal. Energy 282:282. doi: 10.1016/j.energy.2023.128616.
  • Lü, H.-F., J. Deng, D.-J. Li, F. Xu, Y. Xiao, and C.-M. Shu. 2021. Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process. Energy 227:227. doi: 10.1016/j.energy.2021.120431.
  • Luo, Z., B. Qin, Q. Shi, H. Hu, P. Sheng, and S. Tian. 2022. Compound effects of water immersion and pyritic sulfur on the microstructure and spontaneous combustion of non-caking coal. Fuel 308:121999. doi: 10.1016/j.fuel.2021.121999.
  • Nie, B., H. Yan, P. Liu, Z. Chen, C. Peng, X. Wang, F. Yin, J. Gong, Y. Wei, S. Lin, et al. 2022. Experimental investigation on spontaneous combustion oxidation characteristics and stages of coal with different metamorphic degrees. Environ. Sci. Pollut. Res. 30 (3):8269–79. doi: 10.1007/s11356-022-22824-0.
  • Niu, H., S. Sun, Q. Sun, and H. Wang. 2023. Study on thermal behavior characteristics and microstructure evolution mechanism of residual coal combustion process in deep high initial temperature environment. Combust. Sci. Technol. 1–19. doi: 10.1080/00102202.2023.2271654.
  • Pan, R., C. Li, J. Chao, D. Hu, and H. Jia. 2023. Thermal properties and microstructural evolution of coal spontaneous combustion. Energy 262:262. doi: 10.1016/j.energy.2022.125400.
  • Shao, Z., B. Tan, B. Wan, T. Li, X. Song, and H. Wang. 2023. Study on the change of key groups and gasproduction mechanism of different degrees of coal under thermal effect. Thermochim. Acta 725:179533.
  • Song, B., X. Zhai, T. Ma, B. Wang, L. Hao, and Y. Zhou. 2023. Effect of water immersion on pore structure of bituminous coal with different metamorphic degrees. Energy, 274.
  • Sun, Q.-Q., H. Y. Niu, H. Y. Wang, Y.-X. Yang, and S.-W. Sun. 2024. Periodic action mechanism of soaking on the evolution of lignite pore structure and microactive groups. Fuel 359:130258.
  • Wang, K., X. Liu, J. Deng, Y. Zhang, and S. Jiang. 2019. Effects of pre-oxidation temperature on coal secondary spontaneous combustion. J. Therm. Anal. Calorim. 138 (2):1363–70. doi: 10.1007/s10973-019-08138-3.
  • Wen, G., S. Yang, Y. Liu, W. Wu, D. Sun, and K. Wang. 2019. Influence of water soaking on swelling and microcharacteristics of coal. Energy sci. eng. 8:50–60. doi: 10.1002/ese3.508.
  • Wu, Y., Y. Zhang, J. Wang, X. Zhang, J. Wang, and C. Zhou. 2020. Study on the effect of extraneous moisture on the spontaneous combustion of coal and its mechanism of action. Energies 13 (8):1969. doi: 10.3390/en13081969.
  • Xu, Y.-L., Y.-C. Bu, and L.-Y. Wang. 2021. Re-ignition characteristics of the long-flame coal affected by high-temperature oxidization & water immersion. J. Cleaner Prod. 315:128064. doi: 10.1016/j.jclepro.2021.128064.
  • Yang, D., K. Peng, Y. Zheng, Y. Chen, J. Zheng, M. Wang, and S. Chen. 2023. Study on the characteristics of coal and gas outburst hazard under the influence of high formation temperature in deep mines. Energy 268:126645.
  • Zhai, X., H. Ge, T. Wang, C.-M. Shu, and J. Li. 2020. Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal. Energy 205:118076. doi: 10.1016/j.energy.2020.118076.
  • Zhang, X., H. Liang, B. Lu, L. Qiao, G. Huang, C. Yu, and J. Zou. 2024. Stage changes in the oxidizing properties of long-term water-soaked coal and analysis of key reactive groups. Fuel 358:130186. doi: 10.1016/j.fuel.2023.130186.
  • Zhang, X., B. Lu, J. Zhang, X. Fu, H. Deng, L. Qiao, C. Ding, and F. Gao. 2023. Experimental and simulation study on hydroxyl group promoting low-temperature oxidation of active groups in coal. Fuel 340:127501.
  • Zhong, X., L. Kan, H. Xin, B. Qin, and G. Dou. 2019. Thermal effects and active group differentiation of low-rank coal during low-temperature oxidation under vacuum drying after water immersion. Fuel 236:1204–12. doi: 10.1016/j.fuel.2018.09.059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.