91
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparing Ignition of Fuel Beds to Firebrand Showers to Ignition of Fuel Beds by Non-Reacting Heaters

ORCID Icon & ORCID Icon
Received 28 May 2024, Accepted 23 Jul 2024, Published online: 03 Aug 2024

References

  • Abatzoglou, J. T., and A. P. Williams. 2016. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 113 (42):11770–75. doi:10.1073/pnas.1607171113.
  • Alvarez, C., G. Moreno, F. Valenzuela, J. I. Rivera, F. Ebensperger, P. Reszka, and A. Fuentes. 2023. Use of an electric heater and as an idealized firebrand to determine ignition delay time of Eucalyptus globulus leaves. Fire Saf. J. 141:103923. doi:10.1016/j.firesaf.2023.103923.
  • Bean, D., and D. Blunck. 2021. Sensitivities of porous beds and plates to ignition by firebrands. Front. Mech. Eng. 7:653810. doi:10.3389/fmech.2021.653810.
  • Bearinger, E. D., J. L. Hodges, F. Yang, C. M. Rippe, and B. Lattimer. 2021. Localized heat transfer from firebrands to surfaces. Fire Saf. J. 120:103037. doi:10.1016/j.firesaf.2020.103037.
  • Boonmee, N., and J. Quintiere. 2002. Glowing and flaming autoignition of wood. Proc. Combust. Inst. 29 (1):289–96. doi:10.1016/S1540-7489(02)80039-6.
  • CALFIRE. 2018. Incident archive. Accessed May 28, 2024. https://www.fire.ca.gov/incidents/2018/.
  • CALFIRE. 2021. Incident archive. Accessed May 28, 2024. https://www.fire.ca.gov/incidents/2021/.
  • EFFIS Statistics Portal. Accessed May 28, 2024. https://effis.jrc.ec.europa.eu/apps/effis.statistics/.
  • Ganteaume, A., R. Barbero, M. Jappiot, and E. Maillé. 2021. Understanding future changes to fires in southern Europe and their impacts on the wildland-urban interface. J. Saf. Sci. Resilience 2 (1):20–29. doi:10.1016/j.jnlssr.2021.01.001.
  • Hassan, A., and A. Betts. Maui fires latest: Lahaina reopens to residents. New York Times. Accessed September 29, 2023 Accessed May 28, 2024. https://www.nytimes.com/article/maui-wildfires-hawaii.html.
  • Hernandez, N., A. Fuentes, J. L. Consalvi, and J. C. Elicer-Cortes. 2018. Spontaneous ignition of wildland fuel by idealized firebrands. Exp. Therm. Fluid Sci. 95:88–95. doi:10.1016/j.expthermflusci.2018.01.037.
  • Jackson, K. 2015. Case study of the 2015 hidden pines wildland-urban interface fires in Bastrop Texas. Bastrop, Texas, USA: Bastrop County Office of Emergency Management.
  • Kasymov, D. P., M. V. Agafontsev, V. A. Tarakanova, E. L. Loboda, P. S. Martynov, K. E. Orlov, and V. V. Reyno. 2021. Effect of wood structure geometry during firebrand generation in laboratory scale and semi-field experiments. J. Phys.: Conf. Ser 1867 (1):012020. doi:10.1088/1742-6596/1867/1/012020.
  • Manzello, S. L., and E. I. D. Foote. 2014. Characterizing firebrand exposure from wildland–urban interface (WUI) fires: Results from the 2007 angora fire. Fire Technol. 50 (1):105–24. doi:10.1007/s10694-012-0295-4.
  • Manzello, S. L., S. H. Park, and T. G. Cleary. 2009. Investigation on the ability of glowing firebrands deposited within crevices to ignite common building materials. Fire Saf. J. 44 (6):894–900. doi:10.1016/j.firesaf.2009.05.001.
  • Manzello, S. L., S. Suzuki, M. J. Gollner, and A. C. Fernandez-Pello. 2020. Role of firebrand combustion in large outdoor fire spread. Prog. Energy Combust. Sci. 76:100801. doi:10.1016/j.pecs.2019.100801.
  • Peters, B., and C. Bruch. 2003. Drying and pyrolysis of wood particles: Experiments and simulation. J. Analytical Appl. Pyrolysis 70 (2):233–50. doi:10.1016/S0165-2370(02)00134-1.
  • Rivera, J., N. Hernandez, J. L. Consalvi, P. Reszka, J. Contreras, and A. Fuentes. 2021. Ignition of wildland fuels by idealized firebrands. Fire Saf. J. 120:103036. doi:10.1016/j.firesaf.2020.103036.
  • Santoso, M., E. Christensen, J. Yang, and G. Rein. 2019. Review of transition from smoldering to flaming combustion in wildfires. Front. Mech. Eng. 5:49. doi:10.3389/fmech.2019.00049.
  • Suzuki, S., and S. L. Manzello. 2021a. Investigating coupled effect of radiative heat flux and firebrand showers on ignition of fuel beds. Fire Technol. 57 (2):683–97. doi:10.1007/s10694-020-01018-5.
  • Suzuki, S., and S. L. Manzello. 2021b. Towards understanding the effect of cedar roof covering application on firebrand production in large outdoor fires. J. Cleaner Prod. 278 (1):123243. doi:10.1016/j.jclepro.2020.123243.
  • Suzuki, S., and S. L. Manzello. 2023. Experimental and theoretical approaches to elucidate fuel bed ignition exposed to firebrand showers and radiant heat. Int. J. Heat Mass Transf. 202:123740. doi:10.1016/j.ijheatmasstransfer.2022.123740.
  • Teague, B., S. Pascoe, and R. McLeod. 2010. The 2009 victorian bushfires royal commission final report: Summary. Victorian Bushfires Royal Commission.
  • Yin, P., N. Liu, H. Chen, J. S. Lozano, and Y. Shan. 2012. New correlation between ignition time and moisture content for pine needles attacked by firebrands, fire technol. 50 (1):79–91. doi:10.1007/s10694-012-0272-y.
  • Zhu, L., and J. Urban. 2023. Cooperative spot ignition by idealized firebrands: Impact of thermal interaction with fuel. Fire Saf. J. 135:103701. doi:10.1016/j.firesaf.2022.103701.