8
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pore Morphology and Oxidation Behaviour of Deep-Loaded Granular Coal at High Initial Temperatures

, , , &
Received 01 Jun 2024, Accepted 29 Jul 2024, Published online: 05 Aug 2024

References

  • Alehossein, H., and B. A. Poulsen. 2010. Stress analysis of longwall top coal caving. Int. J. Rock Mech. Min. Sci. 47 (1):30–41. doi:10.1016/j.ijrmms.2009.07.004.
  • Bu, Y., H. Niu, G. Wang, T. Qiu, Y. Yang, and L. Sun. 2024. Analysis of stage parameters of low-temperature oxidation of water-soaked coal based on kinetic principles. Sci. of the Total Environ. 946:173947. doi:10.1016/j.scitotenv.2024.173947.
  • Cai, Y. D., D. M. Liu, Z. H. Liu, Y.-F. Zhou, and Y. Che. 2017. Evolution of pore structure, submaceral composition and produced gases of two Chinese coals during thermal treatment. Fuel Process. Technol. 156:298–309. doi:10.1016/j.fuproc.2016.09.011.
  • Chao, J., Q. Gu, R. Pan, X. Han, D. Hu, W. Liu, and S. Liu. 2024. Influence of a high-temperature environment in deep mining on the characteristics of coal spontaneous combustion. Combust. Sci. Technol. 196 (4):589–607. doi:10.1080/00102202.2022.2093110.
  • Chao, J. K., T. Chu, M. Yu, X. Han, D. Hu, W. Liu, and X. Yang. 2021. An experimental study on the oxidation kinetics characterization of broken coal under stress loading. Fuel 287:119515. doi:10.1016/j.fuel.2020.119515.
  • Chen, L. 2018. Experimental study on oxidation spontaneous combustion characteristics of mining unloading coal. Jiaozuo: Henan Polytechnic University. https://kns.cnki.net/kcms2/article/abstract?v=7sQefmFxFK08Vq7NO-xDe6JfyLIypsVXl9RmlKXPahj5arGP8qjnlZryHf0tug2SBAZISSf9EuPiis-9eOhV7aQgPx9nAYkonTQtugITwO6oKSCZiITWhZ9qDlr7kHrp77NeDz9kvW7g29HNQIM5YXOuIyyYXhhr&uniplatform=NZKPT&language=CHS.
  • Deng, J., J. Zhao, Y. Zhang, A. Huang, X. Liu, X. Zhai, and C. Wang. 2016. Thermal analysis of spontaneous combustion behavior of partially oxidized coal. Process Saf. Environ. Protect. 104:218–24. doi:10.1016/j.psep.2016.09.007.
  • Gbadamosi, A.R., M. Onifade, B. Genc, and S. Rupprecht. 2021. Spontaneous combustion liability indices of coal. Combust. Sci. Technol. 193 (15):2659–71. doi:10.1080/00102202.2020.1754208.
  • Granda, M., C. Blanco, P. Alvarez, J. W. Patrick, and R. Menéndez. 2014. Chemicals from coal coking. Chem. Rev. 114 (3):1608–36. doi:10.1021/cr400256y.
  • Huang, Z., J. Li, Y. Gao, Z. Shao, and Y. Zhang. 2022. Thermal behavior and microscopic characteristics of water-soaked coal spontaneous combustion. Combust. Sci. Technol. 194 (3):636–54. doi:10.1080/00102202.2020.1777993.
  • Jia, T. 2021. Experimental study on crush and spontaneous combustion characteristics of left coal in goaf with large dip angle working face. Fuxin: Liaoning Technical University. doi:10.27210/d.cnki.glnju.2021.000530.
  • Li, Q. W., Y. Xiao, C. P. Wang, J. Deng, and C.-M. Shu. 2019. Thermokinetic characteristics of coal spontaneous combustion based on thermogravimetric analysis. Fuel 250:235–44. doi:10.1016/j.fuel.2019.04.003.
  • Liu, J., Y. Kang, M. Chen, L. You, T. Zhang, X. Gao, and Z. Chen. 2021. Investigation of enhancing coal permeability with high-temperature treatment. Fuel 290:120082. doi:10.1016/j.fuel.2020.120082.
  • Liu, X., Q. Li, G. Zhang, X. Ma, P. Zhu, and X. Li. 2022. Characterization of activated carbon precursors prepared by dry-air oxidant and its effects on the adsorptions of activated carbons. Fuel 318:123723. doi:10.1016/j.fuel.2022.123723.
  • Lu, W., J. Li, J. Li, Q. He, W. Hao, and Z. Li. 2021. Oxidative kinetic characteristics of dried soaked coal and its related spontaneous combustion mechanism. Fuel 305:121626. doi:10.1016/j.fuel.2021.121626.
  • Lu, X., J. Deng, Y. Xiao, X. Zhai, C. Wang, and X. Yi. 2022. Recent progress and perspective on thermal-kinetic, heat and mass transportation of coal spontaneous combustion hazard. Fuel 308:121234. doi:10.1016/j.fuel.2021.121234.
  • Luo, Z., B. Qin, Q. Shi, H. Hu, P. Sheng, and S. Tian. 2022. Compound effects of water immersion and pyritic sulfur on the microstructure and spontaneous combustion of non-caking coal. Fuel 308:121999. doi:10.1016/j.fuel.2021.121999.
  • Meng, X., J. Sun, R. Chu, L. Fan, X. Jiang, L. Tang, and D. Zheng. 2023. Effect of active functional groups in coal on the release behavior of small molecule gases during low-temperature oxidation. Energy 273:127290. doi:10.1016/j.energy.2023.127290.
  • National Bureau of Statistics. 2024. Statistical bulletin of the people ‘s Republic of China on national economic and social development. Beijing. https://www.stats.gov.cn/sj/zxfb/202402/t20240228_1947915.html.
  • Nemčok, M., J. N. Moore, C. Christensen, R. Allis, T. Powell, B. Murray, and G. Nash. 2007. Controls on the Karaha–telaga bodas geothermal reservoir, Indonesia. Geothermics 36 (1):9–46. doi:10.1016/j.geothermics.2006.09.005.
  • Niu, H., Q. Sun, Y. Bu, H.-Y. Chen, Y.-X. Yang, S.-P. Li, S.-W. Sun, Z.-H. Mao, and M. Tao. 2022. Study of the microstructure and oxidation characteristics of residual coal in deep mines. J. Cleaner Prod. 373:133923. doi:10.1016/j.jclepro.2022.133923.
  • Niu, H., Y. Yang, and S. Li. 2023. Effects of pre-oxidized temperature and pre-oxi dized oxygen concentration on burning characteristics of pre-oxidized coal. Fuel 332:125723. doi:10.1016/j.fuel.2022.125723.
  • Onifade, M., B. Genc, and S. Bada. 2020. Spontaneous combustion liability between coal seams: A thermogravimetric study. Int. J. Min. Sci. Technol. 30 (5):691–98. doi:10.1016/j.ijmst.2020.03.006.
  • Onifade, M., B. Genc, G. A. R, A. Morgan, and T. Ngoepe. 2021. Influence of antioxidants on spontaneous combustion and coal properties. Process Saf. Environ. Protect. 148:1019–32. doi:10.1016/j.psep.2021.02.017.
  • Pan, R., Z. Ma, M. Yu, J. Chao, C. Li, and J. Wang. 2020. Study on the mechanism of coal oxidation under stress disturbance. Fuel 275:117901. doi:10.1016/j.fuel.2020.117901.
  • Pan, R., C. Wang, J. Chao, H. Jia, and J. Wang. 2022. Experimental research on the characteristics of the secondary oxidation heat of different unloaded coals. Fuel 307:121939. doi:10.1016/j.fuel.2021.121939.
  • Qin, L., S. Li, C. Zhai, H. Lin, P. Zhao, Y. Shi, and Y. Bai. 2020. Changes in the pore structure of lignite after repeated cycles of liquid nitrogen freezing as determined by nitrogen adsorption and mercury intrusion. Fuel 267:117214. doi:10.1016/j.fuel.2020.117214.
  • Senneca, O., F. Scala, R. Chirone, and P. Salatino. 2017. Relevance of structure, fragmentation and reactivity of coal to combustion and oxy-combustion. Fuel 201:65–80. doi:10.1016/j.fuel.2016.11.034.
  • Shi, X., Y. Zhang, X. Chen, Y. Zhang, and T. Ma. 2021. Numerical study on the oxidation rea ction characteristics of coal under temperature-programmed conditions. Fuel Process. Technol. 213:106671. doi:10.1016/j.fuproc.2020.106671.
  • Song, Y., S. Yang, Q. Xu, J. Cai, X. Hu, N. Sang, and Z. Zhang. 2019. Effect of low-temperature oxidation of coal with different metamorphic degrees on coal quality characteristics and outburst comprehensive index. Process Saf. Environ. Protect. 132:142–52. doi:10.1016/j.psep.2019.10.009.
  • Sun, L., H. Wang, C. Zhang, S. Zhang, N. Liu, and Z. He. 2021. Evolution of methane ad-/desorption and diffusion in coal under in the presence of oxygen and nitrogen after heat treatment. J. Nat. Gas Sci. Eng. 95:104196. doi:10.1016/j.jngse.2021.104196.
  • Tang, Y., and H. Wang. 2019. Experimental investigation on microstructure evoluti on and spontaneous combustion properties of secondary oxidation of lignite. Process Saf. Environ. Protect. 124:143–50. doi:10.1016/j.psep.2019.01.031.
  • Thommes, M. K., A. V. Kaneko, J. P. Neimark Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. Sing. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 38 (1):25. doi:10.1515/ci-2016-0119.
  • Wall, T. F., G. Liu, H. Wu, D. G. Roberts, K. E. Benfell, S. Gupta, J. A. Lucas, and D. J. Harris. 2002. The effects of pressure on coal reactions during pulverised coal combustion and gasification. Prog. Energy Combust. Sci. 28 (5):405–33. doi:10.1016/S0360-1285(02)00007-2.
  • Wang, K., H. Fan, P. Gao, Y. He, and P. Shu. 2020. Spontaneous combustion characteristics of wetting coal under different prepyrolysis temperatures. ACS Omega. 5 (51):33347–56. doi:10.1021/acsomega.0c05172.
  • Wang, R. 2022. Stress and temperature under coupling action of deep coal spontaneous combustion behaviour research. Ganzhou: Jiangxi University of Science and Technology. doi:10.27176/d.cnki.gnfyc.2022.000627.
  • Wang, Z., Y. Cheng, Y. Qi, R. Wang, L. Wang, and J. Jiang. 2019. Experimental study of pore structure and fractal characteristics of pulverized intact coal and tectonic coal by low temperature nitrogen adsorption. Powder. Technol. 350:15–25. doi:10.1016/j.powtec.2019.03.030.
  • Wen, H., Y. Lu, and W. Liu. 2021. Study on the effects of different oxygen concentrations on spontaneous combustion characteristics of coal with thermogravimetric method. Min. Saf. Environ. Protect. 48 (1):1–5+10. doi:10.19835/j.issn.1008-4495.2021.01.001.
  • Wu, X. F., and G. Q. Chen. 2018. Coal use embodied in globalized world economy: From source to sink through supply chain. Renewable Sustain. Energy Rev. 81:978–93. doi:10.1016/j.rser.2017.08.018.
  • Wu, Y. N., X. L. Xiao, and Z. Y. Song. 2017. Competitiveness analysis of coal industry in China: A diamond model study. Resour. Policy 52:39–53. doi:10.1016/j.resourpol.2017.01.015.
  • Xu, Y., Y. Bu, and L. Wang. 2021. Re-ignition characteristics of the long-flame coal affected by high-temperature oxidization & water immersion. J. Cleaner Prod. 315:128064. doi:10.1016/j.jclepro.2021.128064.
  • Xu, Y., X. Huo, L. Wang, Y.-B. Gao, Z.-C. Lv, X.-W. Mi, and Y.-S. Guo. 2024. Microscopic and macroscopic characteristics for coal spontaneous combustion under pre-oxidation and stress. Fuel 366:131340. doi:10.1016/j.fuel.2024.131340.
  • Xu, Y., N. Zuo, Y. Bu, and L.-Y. Wang. 2020. Experimental study on the characteristics of oxidation kinetics and heat transfer for coal-field fires under axial compression. J. Therm. Anal. Calorim 139 (1):597–607. doi:10.1007/s10973-019-08379-2.
  • Yang, X., T. Chu, L. Wang, H. Li, J. Wang, and M. Yu. 2024. Mechanochemical evolution of coal microscopic groups: A new pathway for mechanical forces acting on coal spontaneous combustion. Sci. Total Environ. 925:171471. doi:10.1016/j.scitotenv.2024.171471.
  • Yuan, Y., M. Hao, and L. Long. 2022. Study on oxidative spontaneous combustion characteristics of raw coal and oxidized coal. Coal Sci. Technol. Mag. 43 (1):27–32+38. doi:10.19896/j.cnki.mtkj.2022.01.006.
  • Zhang, J., W. Wang, Y. Li, H. Li, G. Zhang, and Y. Wu. 2022. Fracture distribution characteristics in goaf and prevention and control of spontaneous combustion of remained coal under the influence of gob-side entry retaining roadway. Energies 15 (13):4778. doi:10.3390/en15134778.
  • Zhang, X. F., A. Qi, P. Wang, Q. Huang, T. Zhao, C. Yan, L. Yang, and W. Wang. 2023. Spatial distribution, sources, air–soil exchange, and health risks of parent PAHs and derivative-alkylated PAHs in different functional areas of an Oilfield Area in the Yellow River Delta, North China. N. China, Toxics 11 (6):540. doi:10.3390/toxics11060540.
  • Zhang, X., and J. Zou. 2022. Research on collaborative control technology of coal spontaneous combustion and gas coupling disaster in goaf based on dynamic isolation. Fuel 321:124123. doi:10.1016/j.fuel.2022.124123.
  • Zhang, Y., Y. Li, Y. Huang, S. Li, and W. Wang. 2018. Characteristics of mass, heat and gaseous products during coal spontaneous combustion using TG/DSC–FTIR technology: The impacts of oxygen concentrations and heating rates. J. Therm. Anal. Calorim. 131 (3):2963–74. doi:10.1007/s10973-017-6738-x.
  • Zhang, Y. T., Z. Yuanbo, L. Yaqing, S. Xueqiang, and Z. Yujie. 2021. Heat effects and kinetics of coal spontaneous combustion at various oxygen contents. Energy 234:121299. doi:10.1016/j.energy.2021.121299.
  • Zhang, Y., J. Wu, C. Zhou, T. Ren, J. Wang, and L. Chang. 2021. Study on the intrinsic exothermic reaction of coal with oxygen at low temperature by DSC profile subtraction method. Combust. Sci. Technol. 193 (14):2464–81. doi:10.1080/00102202.2020.1746288.
  • Zhang, Y., J. Xu, and D. Wang. 2020. Experimental study on the inhibition effects of nitrogen and carbon dioxide on coal spontaneous combustion. Energies 13 (20):5256. doi:10.3390/en13205256.
  • Zhao, J. 2019. Experimental study on oxidative spontaneous combustion characteristics of loaded crushed coal. Jiaozuo: Henan Polytechnic University. doi:10.27116/d.cnki.gjzgc.2019.000003.
  • Zhao, R., X. Zhang, Y. Su, Z. Liu, and C. Du. 2020. Unprecedented catalytic activity of coal gangue toward environmental remediation: Key role of hydroxyl groups. Chem. Eng. J. 380:122432. doi:10.1016/j.cej.2019.122432.
  • Zhou, X., Y. Yang, K. Zheng, G. Miao, M. Wang, and P. Li. 2022. Study on the spontaneous combustion characteristics and prevention technology of coal seam in overlying close goaf. Combust. Sci. Technol. 194 (11):2233–54. doi:10.1016/j.jclepro.2022.133923.
  • Zhu, H., H. Zhao, H. Wei, W. Wang, H.-R. Wang, K. Li, X.-X. Lu, and B. Tan. 2020. Investigation into the thermal behavior and FTIR micro-characteristics of re-oxidation coal. Combust. Flame 216:354–68. doi:10.1016/j.combustflame.2020.03.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.